Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force

Abstract

The physics of nanoscopic systems is strongly governed by thermal fluctuations that produce significant deviations from the behaviour of large ensembles1,2. Stretching experiments of single molecules offer a unique way to study fundamental theories of statistical mechanics, as recently shown for the unzipping of RNA hairpins3. Here, we report a molecular design based on oligo calix[4]arene catenanes—calixarene dimers held together by 16 hydrogen bridges—in which loops within the molecules limit how far the calixarene nanocapsules can be separated. This mechanically locked structure tunes the energy landscape of dimers, thus permitting the reversible rupture and rejoining of the individual nanocapsules. Experimental evidence, supported by molecular dynamics simulations, reveals the presence of an intermediate state involving the concerted rupture of the 16 hydrogen bridges. Stochastic modelling using a three-well potential under external load allows reconstruction of the energy landscape.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mechanically interlocked oligomeric calix[4]arene dimers under external load using an atomic force microscope.
Figure 2: Stochastic nature of reversible unbinding of oligomeric calix[4]arene dimers as a function of pulling velocity.
Figure 3: Modelling of bond breakage and formation.

References

  1. Bustamante, C., Liphardt, J. & Ritort, F. The nonequilibrium thermodynamics of small systems. Physics Today 58, 43–48 (2005).

    CAS  Article  Google Scholar 

  2. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3349–3391 (2000).

    Article  Google Scholar 

  3. Liphardt, J., Onoa, B., Smith, S., Tinoco, I. J. & Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 292, 733–737 (2001).

    CAS  Article  Google Scholar 

  4. Balzani, V. et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Soc. USA 103, 1178–1183 (2006).

    CAS  Article  Google Scholar 

  5. Evans, D. J. & Searles, D. J. The fluctuation theorem. Adv. Phys. 51, 1529–1585 (2002).

    Article  Google Scholar 

  6. Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).

    CAS  Article  Google Scholar 

  7. Crooks, G. E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999).

    CAS  Article  Google Scholar 

  8. Jarzynski, C. Comparison of far-from-equilibrium work relations. Compt. Rend. Phys. 8, 495–506 (2007).

    CAS  Article  Google Scholar 

  9. Hoh, J. H., Cleveland, J. P., Prater, C. B., Revel, J. P. & Hansma, P. K. Quantized adhesion detected with the atomic force microscope. J. Am. Chem. Soc. 114, 4917–4918 (1992).

    CAS  Article  Google Scholar 

  10. Stark, R. W. Getting a feeling for the nanoworld. Nature Nanotech. 2, 461–462 (2007).

    CAS  Article  Google Scholar 

  11. Muller, D. J. & Dufrene, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nature Nanotech. 3, 261–269 (2008).

    Article  Google Scholar 

  12. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    CAS  Article  Google Scholar 

  13. Weizmann, Y., Braunschweig, A. B., Wilner, O. I., Cheglakov, Z. & Willner, I. A polycatenated DNA scaffold for the one-step assembly of hierarchical nanostructures. Proc. Natl Acad. Soc. USA 105, 5289–5294 (2008).

    CAS  Article  Google Scholar 

  14. Williams, P. M. et al. Hidden complexity in the mechanical properties of titin. Nature 422, 446–449 (2003).

    CAS  Article  Google Scholar 

  15. Fisher, T. E., Marszalek, P. E. & Fernandez, J. M. Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7, 719–724 (2000).

    CAS  Article  Google Scholar 

  16. Eckel, R., Ros, R., Decker, B., Mattay, J. & Anselmetti, D. Supramolecular chemistry at the single molecule level. Angew. Chem. Int. Ed. 44, 484–488 (2005).

    CAS  Article  Google Scholar 

  17. Schonherr, H. et al. Individual supramolecular host–guest interactions studied by dynamic single molecule force spectroscopy. J. Am. Chem. Soc. 122, 4963–4967 (2000).

    Article  Google Scholar 

  18. Manosas, M., Collin, D. & Ritort, F. Force-dependent fragility in RNA hairpins. Phys. Rev. Lett. 96, 218301 (2006).

    CAS  Article  Google Scholar 

  19. Liphardt, J., Dumont, S., Smith, S. B., Tinoco, I. J. & Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski's equality. Science 296, 1832–1835 (2002).

    CAS  Article  Google Scholar 

  20. Lee, G. et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246–249 (2006).

    CAS  Article  Google Scholar 

  21. Vysotsky, M. O., Bolte, M., Thondorf, I. & Böhmer, V. New molecular topologies by fourfold metathesis reactions within a hydrogen-bonded calix[4]arene dimer. Chem. Eur. J. 9, 3375–3382 (2003).

    CAS  Article  Google Scholar 

  22. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    CAS  Article  Google Scholar 

  23. Schlierf, M. & Rief, M. Temperature softening of a protein in single-molecule experiments. J. Mol. Biol. 354, 497–503 (2005).

    CAS  Article  Google Scholar 

  24. Onoa, B. et al. Identifying kinetic barriers to mechanical unfolding of the T. thermophila ribozyme. Science 299, 1892–1895 (2003).

    CAS  Article  Google Scholar 

  25. van der Spoel, D. et al. GROMACS: Fast, flexible and free. J. Comp. Chem. 26, 1701–1718 (2005).

    CAS  Article  Google Scholar 

  26. Marszalek, P. E. et al. Mechanical unfolding intermediates in titin modules. Nature 402, 100–103 (1999).

    CAS  Article  Google Scholar 

  27. Merkel, R., Nassoy, P., Leung, A., Ritchie, K. & Evans, E. Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999).

    CAS  Article  Google Scholar 

  28. Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    Article  Google Scholar 

  29. Raible, M. et al. Theoretical analysis of single-molecule force spectroscopy experiments: heterogeneity of chemical bonds. Biophys. J. 90, 3851–3864 (2006).

    CAS  Article  Google Scholar 

  30. Diezemann, G. & Janshoff, A. Dynamic force spectroscopy: Analysis of reversible bond-breaking dynamics. J. Chem. Phys. 129, 0849041 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (DFG) (SFB 625).

Author information

Authors and Affiliations

Authors

Contributions

Y.R. and O.M. synthesized the calixarene molecules. M.J. and I.M. performed the atomic force experiments, T.M. and J.G. carried out the molecular dynamics simulations, G.D. did the stochastic modelling, and V.B., P.M. and A.J. conceived and designed the experiments.

Corresponding author

Correspondence to Andreas Janshoff.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1212 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Janke, M., Rudzevich, Y., Molokanova, O. et al. Mechanically interlocked calix[4]arene dimers display reversible bond breakage under force. Nature Nanotech 4, 225–229 (2009). https://doi.org/10.1038/nnano.2008.416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.416

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research