Abstract
The ability of the scanning tunnelling microscope to manipulate single atoms and molecules has allowed a single bit of information to be represented by a single atom or molecule. Although such information densities remain far beyond the reach of real-world devices, it has been assumed that the finite spacing between atoms in condensed-matter systems sets a rigid upper limit on information density. Here, we show that it is possible to exceed this limit with a holographic method that is based on electron wavefunctions rather than free-space optical waves. Scanning tunnelling microscopy and holograms comprised of individually manipulated molecules are used to create and detect electronically projected objects with features as small as ∼0.3 nm, and to achieve information densities in excess of 20 bits nm−2. Our electronic quantum encoding scheme involves placing tens of bits of information into a single fermionic state.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Visualizing designer quantum states in stable macrocycle quantum corrals
Nature Communications Open Access 08 October 2021
-
Nonlinear metamaterials for holography
Nature Communications Open Access 22 August 2016
-
Assessment of Scanning Tunneling Spectroscopy Modes Inspecting Electron Confinement in Surface-Confined Supramolecular Networks
Scientific Reports Open Access 18 March 2013
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).
Heanue, J. F., Bashaw, M. C. & Hesselink, L. Volume holographic storage and retrieval of digital data. Science 265, 749–752 (1994).
Coufal, H. J., Sincerbox, G. T. & Psaltis, D. Holographic Data Storage (Springer-Verlag, 2000).
Ashley, J. et al. Holographic data storage. IBM J. Res. Develop. 44, 341–368 (2000).
Moon, C. R. et al. Quantum phase extraction in isospectral electronic nanostructures. Science 319, 782–787 (2008).
Moon, C. R., Lutz, C. P. & Manoharan, H. C. Single-atom gating of quantum-state superpositions. Nature Phys. 4, 454–458 (2008).
Xu, S. Y. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005).
Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).
Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).
Lucente, M. Interactive three-dimensional holographic displays: seeing the future in depth. ACM SIGGRAPH Comput. Graphics 31, 63–67 (1997).
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).
Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).
Braun, K. F. & Rieder, K. H. Engineering electronic lifetimes in artificial atomic structures. Phys. Rev. Lett. 88, 096801 (2002).
Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).
Fiete, G. A. et al. Scattering theory of Kondo mirages and observation of single Kondo atom phase shift. Phys. Rev. Lett. 86, 2392–2395 (2001).
Sentef, M., Kampf, A. P., Hembacher, S. & Mannhart, J. Focusing quantum states on surfaces: a route towards the design of ultrasmall electronic devices. Phys. Rev. B 74, 153407 (2006).
Aassime, A., Johansson, G., Wendin, G., Schoelkopf, R. J. & Delsing, P. Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. Phys. Rev. Lett. 86, 3376–3379 (2001).
Awschalom, D. D. et al. Low-noise modular microsusceptometer using nearly quantum limited dc SQUIDs. Appl. Phys. Lett. 53, 2108–2110 (1988).
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).
Heller, E. J., Crommie, M. F., Lutz, C. P. & Eigler, D. M. Scattering and absorption of surface electron waves in quantum corrals. Nature 369, 464–466 (1994).
Fiete, G. A. & Heller, E. J. Colloquium: Theory of quantum corrals and quantum mirages. Rev. Mod. Phys. 75, 933–948 (2003).
Correa, A. A., Reboredo, F. A. & Balseiro, C. A. Quantum corral wave-function engineering. Phys. Rev. B 71, 035418 (2005).
Marchesini, S. et al. Massively parallel X-ray holography. Nature Photon. 2, 560–563 (2008).
Stroud, C. R. Jr & Noel, M. W. Optics inside an atom. Opt. Photon. News 10, 34–37 (April 1999).
Weinacht, T. C., Ahn, J. & Bucksbaum, P. H. Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999).
Yamamoto, Y. & Haus, H. A. Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001–1020 (1986).
Kolchin, P., Belthangady, C., Du, S., Yin, G. Y. & Harris, S. E. Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008).
Inoue, K., Waks, E. & Yamamoto, Y. Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002).
Burgi, L., Petersen, L., Brune, H. & Kern, K. Noble metal surface states: deviations from parabolic dispersion. Surf. Sci. 447, 157–161 (2000).
Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).
Acknowledgements
This work was supported by US Office of Naval Research (YIP/PECASE N00014-02-1-0351), US National Science Foundation (CAREER DMR-0135122 & DMR-0804402), US Department of Energy (DE-AC02-76SF00515) and the Stanford-IBM Center for Probing the Nanoscale. The authors acknowledge the National Defense Science and Engineering Graduate fellowship programme (C.R.M. and B.K.F.) and the Alfred P. Sloan Foundation (H.C.M.) for fellowship support. We thank L. Bozano, M. Brongersma, G. Burr, D. Eigler, G. Fiete, J. Kirtley, P. Kolchin, S. Harris, E. Heller, R. McGorty, V. Manoharan, J. Moon, J. Randel, S.-H. Song and Y. Yamamoto for discussions.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 1163 kb)
Supplementary Information
Supplementary Movie 1 (MOV 407 kb)
Rights and permissions
About this article
Cite this article
Moon, C., Mattos, L., Foster, B. et al. Quantum holographic encoding in a two-dimensional electron gas. Nature Nanotech 4, 167–172 (2009). https://doi.org/10.1038/nnano.2008.415
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2008.415
This article is cited by
-
Visualizing designer quantum states in stable macrocycle quantum corrals
Nature Communications (2021)
-
Experimental realization and characterization of an electronic Lieb lattice
Nature Physics (2017)
-
Nonlinear metamaterials for holography
Nature Communications (2016)
-
Ten years in images
Nature Nanotechnology (2016)
-
Visualization and thermodynamic encoding of single-molecule partition function projections
Nature Communications (2015)