Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum holographic encoding in a two-dimensional electron gas


The ability of the scanning tunnelling microscope to manipulate single atoms and molecules has allowed a single bit of information to be represented by a single atom or molecule. Although such information densities remain far beyond the reach of real-world devices, it has been assumed that the finite spacing between atoms in condensed-matter systems sets a rigid upper limit on information density. Here, we show that it is possible to exceed this limit with a holographic method that is based on electron wavefunctions rather than free-space optical waves. Scanning tunnelling microscopy and holograms comprised of individually manipulated molecules are used to create and detect electronically projected objects with features as small as 0.3 nm, and to achieve information densities in excess of 20 bits nm−2. Our electronic quantum encoding scheme involves placing tens of bits of information into a single fermionic state.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic quantum holography concept.
Figure 2: Holographic page encoding and readout.
Figure 3: Volumetric quantum holography.
Figure 4: Electronic versus atomic writing.


  1. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  2. Heanue, J. F., Bashaw, M. C. & Hesselink, L. Volume holographic storage and retrieval of digital data. Science 265, 749–752 (1994).

    Article  CAS  Google Scholar 

  3. Coufal, H. J., Sincerbox, G. T. & Psaltis, D. Holographic Data Storage (Springer-Verlag, 2000).

    Book  Google Scholar 

  4. Ashley, J. et al. Holographic data storage. IBM J. Res. Develop. 44, 341–368 (2000).

    Article  CAS  Google Scholar 

  5. Moon, C. R. et al. Quantum phase extraction in isospectral electronic nanostructures. Science 319, 782–787 (2008).

    Article  CAS  Google Scholar 

  6. Moon, C. R., Lutz, C. P. & Manoharan, H. C. Single-atom gating of quantum-state superpositions. Nature Phys. 4, 454–458 (2008).

    Article  CAS  Google Scholar 

  7. Xu, S. Y. et al. Nanometer-scale modification and welding of silicon and metallic nanowires with a high-intensity electron beam. Small 1, 1221–1229 (2005).

    Article  CAS  Google Scholar 

  8. Curtis, J. E., Koss, B. A. & Grier, D. G. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    Article  CAS  Google Scholar 

  9. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  CAS  Google Scholar 

  10. Lucente, M. Interactive three-dimensional holographic displays: seeing the future in depth. ACM SIGGRAPH Comput. Graphics 31, 63–67 (1997).

    Article  Google Scholar 

  11. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    Article  CAS  Google Scholar 

  12. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  CAS  Google Scholar 

  13. Braun, K. F. & Rieder, K. H. Engineering electronic lifetimes in artificial atomic structures. Phys. Rev. Lett. 88, 096801 (2002).

    Article  Google Scholar 

  14. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  CAS  Google Scholar 

  15. Fiete, G. A. et al. Scattering theory of Kondo mirages and observation of single Kondo atom phase shift. Phys. Rev. Lett. 86, 2392–2395 (2001).

    Article  CAS  Google Scholar 

  16. Sentef, M., Kampf, A. P., Hembacher, S. & Mannhart, J. Focusing quantum states on surfaces: a route towards the design of ultrasmall electronic devices. Phys. Rev. B 74, 153407 (2006).

    Article  Google Scholar 

  17. Aassime, A., Johansson, G., Wendin, G., Schoelkopf, R. J. & Delsing, P. Radio-frequency single-electron transistor as readout device for qubits: charge sensitivity and backaction. Phys. Rev. Lett. 86, 3376–3379 (2001).

    Article  CAS  Google Scholar 

  18. Awschalom, D. D. et al. Low-noise modular microsusceptometer using nearly quantum limited dc SQUIDs. Appl. Phys. Lett. 53, 2108–2110 (1988).

    Article  Google Scholar 

  19. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  20. Heller, E. J., Crommie, M. F., Lutz, C. P. & Eigler, D. M. Scattering and absorption of surface electron waves in quantum corrals. Nature 369, 464–466 (1994).

    Article  Google Scholar 

  21. Fiete, G. A. & Heller, E. J. Colloquium: Theory of quantum corrals and quantum mirages. Rev. Mod. Phys. 75, 933–948 (2003).

    Article  Google Scholar 

  22. Correa, A. A., Reboredo, F. A. & Balseiro, C. A. Quantum corral wave-function engineering. Phys. Rev. B 71, 035418 (2005).

    Article  Google Scholar 

  23. Marchesini, S. et al. Massively parallel X-ray holography. Nature Photon. 2, 560–563 (2008).

    Article  CAS  Google Scholar 

  24. Stroud, C. R. Jr & Noel, M. W. Optics inside an atom. Opt. Photon. News 10, 34–37 (April 1999).

    Article  Google Scholar 

  25. Weinacht, T. C., Ahn, J. & Bucksbaum, P. H. Controlling the shape of a quantum wavefunction. Nature 397, 233–235 (1999).

    Article  CAS  Google Scholar 

  26. Yamamoto, Y. & Haus, H. A. Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001–1020 (1986).

    Article  CAS  Google Scholar 

  27. Kolchin, P., Belthangady, C., Du, S., Yin, G. Y. & Harris, S. E. Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008).

    Article  Google Scholar 

  28. Inoue, K., Waks, E. & Yamamoto, Y. Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002).

    Article  Google Scholar 

  29. Burgi, L., Petersen, L., Brune, H. & Kern, K. Noble metal surface states: deviations from parabolic dispersion. Surf. Sci. 447, 157–161 (2000).

    Article  Google Scholar 

  30. Heinrich, A. J., Lutz, C. P., Gupta, J. A. & Eigler, D. M. Molecule cascades. Science 298, 1381–1387 (2002).

    Article  CAS  Google Scholar 

Download references


This work was supported by US Office of Naval Research (YIP/PECASE N00014-02-1-0351), US National Science Foundation (CAREER DMR-0135122 & DMR-0804402), US Department of Energy (DE-AC02-76SF00515) and the Stanford-IBM Center for Probing the Nanoscale. The authors acknowledge the National Defense Science and Engineering Graduate fellowship programme (C.R.M. and B.K.F.) and the Alfred P. Sloan Foundation (H.C.M.) for fellowship support. We thank L. Bozano, M. Brongersma, G. Burr, D. Eigler, G. Fiete, J. Kirtley, P. Kolchin, S. Harris, E. Heller, R. McGorty, V. Manoharan, J. Moon, J. Randel, S.-H. Song and Y. Yamamoto for discussions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hari C. Manoharan.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1163 kb)

Supplementary Information

Supplementary Movie 1 (MOV 407 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moon, C., Mattos, L., Foster, B. et al. Quantum holographic encoding in a two-dimensional electron gas. Nature Nanotech 4, 167–172 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research