Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Current-driven atomic waterwheels

Abstract

A current induces forces on atoms inside the conductor that carries it1. It is now possible to compute these forces from scratch, and to perform dynamical simulations of the atomic motion under current2,3,4,5,6. One reason for this interest is that current can be a destructive force—it can cause atoms to migrate, resulting in damage and in the eventual failure of the conductor. But one can also ask, can current be made to do useful work on atoms? In particular, can an atomic-scale motor be driven by electrical current7,8,9, as it can be by other mechanisms10,11,12,13? For this to be possible, the current-induced forces on a suitable rotor must be non-conservative, so that net work can be done per revolution. Here we show that current-induced forces in atomic wires are not conservative and that they can be used, in principle, to drive an atomic-scale waterwheel.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of the system setup for modelling conduction in a nanoscale conductor.
Figure 2: Current-induced response of the corner atom in our bent atomic wire.

References

  1. Sorbello, R. S. Theory of electromigration. Solid State Phys. 51, 159–231 (1997).

    Article  Google Scholar 

  2. Di Ventra, M., Pantelides, S. T. & Lang, N. D. Current-induced forces in molecular wires. Phys. Rev. Lett. 88, 046801 (2002).

    CAS  Article  Google Scholar 

  3. Brandbyge, M. et al. Origin of current-induced forces in an atomic gold wire: a first-principles study. Phys. Rev. B 67, 193104 (2003).

    Article  Google Scholar 

  4. Todorov, T. N., Hoekstra, J. & Sutton, A. P. Curent-induced embrittlement of atomic wires. Phys. Rev. Lett. 86, 3606–3609 (2001).

    CAS  Article  Google Scholar 

  5. Verdozzi, C., Stefanucci, G. & Almbladh, C.-O. Classical nuclear motion in quantum transport. Phys. Rev. Lett. 97, 046603 (2006).

    Article  Google Scholar 

  6. McEniry, E. J. et al. Dynamical simulation of inelastic quantum transport. J. Phys.: Condens. Matter 19, 196201 (2007).

    Google Scholar 

  7. Seideman, T. Current-driven dynamics in molecular-scale devices. J. Phys.: Condens. Matter 15, R521–R549 (2003).

    CAS  Google Scholar 

  8. Král, P. & Seideman, T. Current-induced rotation of helical molecular wires. J. Chem. Phys. 123, 184702 (2005).

    Article  Google Scholar 

  9. Bailey, S. W. D., Amanatidis, I. & Lambert, C. J. Carbon nanotube electron windmills: A novel design for nanomotors. Phys. Rev. Lett. 100, 256802 (2008).

    CAS  Article  Google Scholar 

  10. Ross Kelly, T., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    Article  Google Scholar 

  11. Koumura, N. et al. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  Article  Google Scholar 

  12. Fennimore, A. M. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

    CAS  Article  Google Scholar 

  13. Wang, B. & Král, P. Chemically tunable nanoscale propellers of liquids. Phys. Rev. Lett. 98, 266102 (2007).

    Article  Google Scholar 

  14. Di Ventra, M., Chen, Y.-C. & Todorov, T. N. Are current-induced forces conservative? Phys. Rev. Lett. 92, 176803 (2004).

    CAS  Article  Google Scholar 

  15. Sutton, A. P. & Todorov, T. N. A Maxwell relation for current-induced forces. Mol. Phys. 102, 919–925 (2004).

    CAS  Article  Google Scholar 

  16. Lou, L., Schaich, W. L. & Swihart, J. C. Calculations of the driving force of electromigration in hcp metals: Zn, Cd, Mg. Phys. Rev. B 33, 2170–2178 (1986).

    CAS  Article  Google Scholar 

  17. Stamenova, M., Sanvito, S. & Todorov, T. N. Current-driven magnetic rearrangements in spin-polarized point contacts. Phys. Rev. B 72, 134407 (2005).

    Article  Google Scholar 

  18. Ehrenfest, P. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455–457 (1927).

    Article  Google Scholar 

  19. Horsfield, A. P. et al. Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics. J. Phys.: Condens. Matter 16, 3609–3622 (2004).

    CAS  Google Scholar 

  20. Todorov, T. N. Tight-binding simulation of current-carrying nanostructures. J. Phys.: Condens. Matter 14, 3049–3084 (2002).

    CAS  Google Scholar 

  21. Sutton, A. P. et al. A simple model of atomic interactions in noble metals based explicitly on electronic structure. Phil. Mag. A 81, 1833–1848 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable discussions with A. J. Fisher, J. Hoekstra, A. P. Sutton and D. Vanderbilt. This work was funded by the Engineering and Physical Sciences Research Council (EP/C006739/1), and made use of HPCx, the UK national high-performance computing service (EPCC, University of Edinburgh; STFC Daresbury Laboratory; EPSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Dundas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dundas, D., McEniry, E. & Todorov, T. Current-driven atomic waterwheels. Nature Nanotech 4, 99–102 (2009). https://doi.org/10.1038/nnano.2008.411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.411

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research