Letter | Published:

Large voltage-induced magnetic anisotropy change in a few atomic layers of iron

Nature Nanotechnology volume 4, pages 158161 (2009) | Download Citation

Subjects

Abstract

In the field of spintronics, researchers have manipulated magnetization using spin-polarized currents1,2,3. Another option is to use a voltage-induced symmetry change in a ferromagnetic material to cause changes in magnetization or in magnetic anisotropy4,5,6,7,8,9,10,11,12,13,14. However, a significant improvement in efficiency is needed before this approach can be used in memory devices with ultralow power consumption. Here, we show that a relatively small electric field (less than 100 mV nm−1) can cause a large change (40%) in the magnetic anisotropy of a bcc Fe(001)/MgO(001) junction. The effect is tentatively attributed to the change in the relative occupation of 3d orbitals of Fe atoms adjacent to the MgO barrier. Simulations confirm that voltage-controlled magnetization switching in magnetic tunnel junctions is possible using the anisotropy change demonstrated here, which could be of use in the development of low-power logic devices and non-volatile memory cells.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

  2. 2.

    Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

  3. 3.

    , , , & Current induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

  4. 4.

    & Elektrisches Feld zur Ummagnetisierung eines dünnen Films. European patent 19841034.4 (2000).

  5. 5.

    , & Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

  6. 6.

    , & Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nature Nanotech. 3, 46–50 (2008).

  7. 7.

    et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

  8. 8.

    , , & Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

  9. 9.

    et al. Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. Nature Mater. 7, 464–467 (2008).

  10. 10.

    , , , & Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

  11. 11.

    , , & Magnetoelectric exchange bias systems in spintronics. Appl. Phys. Lett. 89, 202508 (2006).

  12. 12.

    et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008).

  13. 13.

    , & Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

  14. 14.

    et al. Novel magnetostrictive memory device. J. Appl. Phys. 87, 6400–6402 (2000).

  15. 15.

    Anisotropie magnétique superfigielle et surstructures d'orientation. J. Phys. Rad. 15, 225–239 (1954).

  16. 16.

    Ferromagnetism near surfaces and in thin films. Appl. Phys. 3, 161–178 (1974).

  17. 17.

    , & Mössbauer spectra of ultrathin Fe films coated by MgO. Journal de Physique 40, C2-86–87 (1979).

  18. 18.

    , & Perpendicular magnetic anisotropy in Pd/Co thin film layered structure. Appl. Phys. Lett. 47, 178–180 (1985).

  19. 19.

    & Spin anisotropy of ferromagnetic films. Phys. Rev. Lett. 56, 2728–2731 (1986).

  20. 20.

    & Perpendicular surface magnetic anisotropy in ultrathin epitaxial Fe films. J. Vac. Sci. Technol. A 8, 2727–2731 (1990).

  21. 21.

    , , & New magneto-optical transition in ultrathin Fe(100) films. Phys. Rev. Lett. 68, 3355–3358 (1992).

  22. 22.

    , , , & Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

  23. 23.

    , , , & Magnetic anisotropies in single and multilayered structures. J. Appl. Phys. 70, 5769–5774 (1991).

  24. 24.

    & (eds) Ultrathin Magnetic Structures Part I, 65–90 (Springer, 1994).

  25. 25.

    , , & First-principle calculation of the magnetic anisotropy energies of Ag/Fe(001) and Au/Fe(001) multilayers. J. Phys. Soc. Jpn 65, 1334–1339 (1996).

  26. 26.

    , , & Prospect for room temperature tunneling anisotropic magnetoresistance effect: Density of states anisotropies in Cp/Pt system. Phys. Rev. B 73, 024418 (2006).

  27. 27.

    et al. Tunneling anisotropic magnetoresistance and spin–orbit coupling in Fe/GaAs/Au tunnel junctions. Phys. Rev. Lett. 99, 056601 (2007).

  28. 28.

    et al. Bias voltage dependence of tunneling anisotropic magnetoresistance in magnetic tunnel junctions with MgO and Al2O3 tunnel barriers. Phys. Rev. Lett. 99, 226602 (2007).

  29. 29.

    et al. Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlOx/Pt structures. Phys. Rev. Lett. 100, 087204 (2008).

  30. 30.

    , , & Thickness and polarization dependence of the magnetooptic signal from ultrathin ferromagnetic films. Phys. Rev. B 39, 6949–6956 (1989).

Download references

Acknowledgements

The authors would like to thank D. Yamaguchi, Y. Sobajima, T. Toyama and H. Okamoto for their assistance in ITO deposition. The authors also acknowledge H. Kubota, W. Van Roy, S. Blügel and T. Miyazaki for their valuable comments. A part of the research was conducted under the financial support of Grant-in-Aid for Scientific Research (A19206002) and G-COE program of Ministry of Education, Culture, Sports, Science and Technology-Japan (MEXT).

Author information

Author notes

    • M. Mizuguchi

    Present address: Institute for Materials Research, Tohoku University, Sendai, Japan

Affiliations

  1. Graduate School of Engineering Science, Osaka University, Toyonaka, Japan

    • T. Maruyama
    • , Y. Shiota
    • , T. Nozaki
    • , K. Ohta
    • , N. Toda
    • , M. Mizuguchi
    • , A. A. Tulapurkar
    • , T. Shinjo
    • , M. Shiraishi
    •  & Y. Suzuki
  2. WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

    • S. Mizukami
  3. Graduate School of Engineering, Tohoku University, Sendai, Japan

    • Y. Ando

Authors

  1. Search for T. Maruyama in:

  2. Search for Y. Shiota in:

  3. Search for T. Nozaki in:

  4. Search for K. Ohta in:

  5. Search for N. Toda in:

  6. Search for M. Mizuguchi in:

  7. Search for A. A. Tulapurkar in:

  8. Search for T. Shinjo in:

  9. Search for M. Shiraishi in:

  10. Search for S. Mizukami in:

  11. Search for Y. Ando in:

  12. Search for Y. Suzuki in:

Contributions

Y.S. conceived and designed the experiments and performed micro magnetic calculation. T.M. and Y.S. performed the experiments and analysis. T.N. and A.A.T. led experiments and physical discussions. K.O., N.T. and M.M. established experimental techniques. S.M. and Y.A. performed FMR measurements. M.S. and T.S. contributed to general discussions. T.M. wrote the paper with review and input from Y.S., T.N. and A.A.T.

Corresponding author

Correspondence to Y. Suzuki.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nnano.2008.406

Further reading