Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Infrared nanoscopy of strained semiconductors

Abstract

Knowledge about strain at the nanometre scale is essential for tailoring the mechanical and electronic properties of materials. Flaws, cracks and their local strain fields can be detrimental to the structural integrity of many solids1,2. Conversely, the controlled straining of silicon can be used to improve the performance of electronic devices3,4,5. Here, we demonstrate that infrared near-field microscopy6 allows direct, non-invasive mapping and a semiquantitative analysis of residual strain fields in polar semiconductor crystals with nanometre-scale resolution. Our experiments with silicon carbide crystals yield optical images of nanoindents showing strain features as small as 50 nm and the evolution of nanocracks. In addition, by imaging nanoindents in doped silicon, we provide experimental evidence for plasmon-assisted near-field imaging of free-carrier properties in nanoscale strain fields. Near-field infrared strain mapping provides possibilities for nanoscale material and device characterization, and could become a tool for nanoscale mapping of the local free-carrier mobility in strain-engineered semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanoscale optical strain mapping by near-field IR phonon–polariton spectroscopy.
Figure 2: s-SNOM images of nanoindents in an epitactically grown SiC crystal.
Figure 3: Plasmon-assisted free-carrier mapping in strained silicon.

Similar content being viewed by others

References

  1. Wang, Y. D. et al. The development of grain-orientation-dependent residual stress in a cyclically deformed alloy. Nature Mater. 2, 101–106 (2003).

    Article  Google Scholar 

  2. Poulsen, H. F., Wert, J. A., Neuefeind, J., Honkimaki, V. & Daymond, M. Measuring strain distributions in amorphous materials. Nature Mater. 4, 33–36 (2005).

    Article  Google Scholar 

  3. Ieong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004).

    Article  Google Scholar 

  4. Vogel, E. M. Technology and metrology of new electronic materials and devices. Nature Nanotech. 2, 25–32 (2007).

    Article  Google Scholar 

  5. Hytch, M., Houdellier, F., Hüe, F. & Snoeck, E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008).

    Article  Google Scholar 

  6. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  Google Scholar 

  7. Tamura, N. et al. High spatial resolution grain orientation and strain mapping in thin films using polychromatic submicron X-ray diffraction. Appl. Phys. Lett. 80, 3724–3726 (2002).

    Article  Google Scholar 

  8. Zhu, W. L., Wan, K. S. & Pezzotti, G. Methods of piezo-spectroscopic calibration of thin film materials: II. Tensile stress field at indentation crack tip. Meas. Sci. Technol. 17, 191–198 (2006).

    Article  Google Scholar 

  9. Boyd, I. W. & Wilson, J. I. B. Silicon–silicon dioxide interface—an infrared study. J. Appl. Phys. 62, 3195–3200 (1987).

    Article  Google Scholar 

  10. Becker, M., Scheel, H., Christiansen, S. & Strunk, H. P. Grain orientation, texture and internal stress optically evaluated by micro-Raman spectroscopy. J. Appl. Phys. 101, 063531 (2007).

    Article  Google Scholar 

  11. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

    Book  Google Scholar 

  12. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    Article  Google Scholar 

  13. Ocelic, N. & Hillenbrand, R. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation. Nature Mater. 3, 606–609 (2004).

    Article  Google Scholar 

  14. Huber, A., Ocelic, N., Taubner, T. & Hillenbrand, R. Nanoscale resolved infrared probing of crystal structure and of plasmon–phonon coupling. Nano Lett. 6, 774–778 (2006).

    Article  Google Scholar 

  15. Huber, A. J., Kazantsev, D., Keilmann, F., Wittborn, J. & Hillenbrand, R. Simultaneous IR material recognition and conductivity mapping by nanoscale near-field microscopy. Adv. Mater. 19, 2209–2212 (2007).

    Article  Google Scholar 

  16. Stockle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    Article  Google Scholar 

  17. Hartschuh, A., Sanchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  Google Scholar 

  18. Yano, T. A., Inouye, Y. & Kawata, S. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Lett. 6, 1269–1273 (2006).

    Article  Google Scholar 

  19. Saito, Y., Motohashi, M., Hayazawa, N., Iyoki, M. & Kawata, S. Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode. Appl. Phys. Lett. 88, 143109 (2006).

    Article  Google Scholar 

  20. Schmidt, U., Ibach, W., Muller, J., Weishaupt, K. & Hollricher, O. Raman spectral imaging—a nondestructive, high resolution analysis technique for local stress measurements in silicon. Vibr. Spectrosc. 42, 93–97 (2006).

    Article  Google Scholar 

  21. Karch, K., Bechstedt, F., Pavone, P. & Strauch, D. Pressure-dependent properties of SiC polytypes. Phys. Rev. B 53, 13400–13413 (1996).

    Article  Google Scholar 

  22. Kehr, S. et al. Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. Phys. Rev. Lett. 100, 256403 (2008).

    Article  Google Scholar 

  23. Liu, J. & Vohra, Y. K. Raman modes of 6H polytype of silicon-carbide to ultrahigh pressures—a comparison with silicon and diamond. Phys. Rev. Lett. 72, 4105–4108 (1994).

    Article  Google Scholar 

  24. Schneider, S. C., Grafström, S. & Eng, L. M. Scattering near-field optical microscopy of optically anisotropic systems. Phys. Rev. B 71, 115418 (2005).

    Article  Google Scholar 

  25. Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Exp. 14, 11222–11233 (2006).

    Article  Google Scholar 

  26. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    Article  Google Scholar 

  27. Quinn, G. D. & Bradt, R. C. On the Vickers indentation fracture toughness test. J. Am. Ceram. Soc. 90, 673–680 (2007).

    Article  Google Scholar 

  28. Masetti, G., Severi, M. & Solmi, S. Modelling of carrier mobility against carrier concentration in arsenic-doped, phosphorus-doped and boron-doped silicon. IEEE Trans. Electron. Dev. 30, 764–769 (1983).

    Article  Google Scholar 

  29. Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005).

    Article  Google Scholar 

  30. Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Exp. 15, 8550–8565 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank IKZ Berlin for providing SiC, NOVASiC (France) for SiC surface polishing, and N. Ocelic, F. Keilmann, J. Plitzko (all Martinsried) and M. Stutzmann (TU Munich) for stimulating discussions. Supported by the Deutsches Bundesministerium für Bildung und Forschung (BMBF) grant no. 03N8705 and the Basque Foundation for Science (Ikerbasque).

Author information

Authors and Affiliations

Authors

Contributions

A.J.H., A.Z. and R.H. conceived and designed the experiments. A.J.H. performed the s-SNOM experiments and A.J.H., A.Z. and R.H. analysed the data. T.K. performed the indentation experiments. A.J.H., A.Z. and R.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to R. Hillenbrand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, A., Ziegler, A., Köck, T. et al. Infrared nanoscopy of strained semiconductors. Nature Nanotech 4, 153–157 (2009). https://doi.org/10.1038/nnano.2008.399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing