Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy

Abstract

The one-dimensional structure of carbon nanotubes1 leads to a variety of remarkable optical2 and electrical3 properties that could be used to develop novel devices4. Recently, the electrical conductance of nanotubes has been shown to decrease under optically induced heating by an amount proportional to the temperature change5. Here, we show that this decrease is also proportional to the initial nanotube conductance, and make use of this effect to develop a new electrical characterization tool for nanotubes. By scanning the focal spot of a laser across the surface of a device through which current is simultaneously measured, we can construct spatially resolved conductance images of both single and arrayed nanotube transistors. We can also directly image the gate control of these devices. Our results establish photothermal current microscopy as an important addition to the existing suite of characterization techniques for carbon nanotubes and other linear nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laser heating-induced decrease in conductance of an individual carbon nanotube transistor.
Figure 2: Dependence of photothermal current on overall device conductance.
Figure 3: Gate dependence of photothermal current.
Figure 4: PTCM on large-scale carbon nanotube transistors.

Similar content being viewed by others

References

  1. Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, 1998).

    Book  Google Scholar 

  2. Jorio, A. et al. Carbon nanotube photophysics. Mater. Res. Soc. Bull. 29, 276–280 (2004).

    Article  CAS  Google Scholar 

  3. McEuen, P. L. & Park, J. Y. Electron transport in single-walled carbon nanotubes. Mater. Res. Soc. Bull. 29, 272–275 (2004).

    Article  CAS  Google Scholar 

  4. Avouris, P. Carbon nanotube electronics and optoelectronics. Mater. Res. Soc. Bull. 29, 403–410 (2004).

    Article  CAS  Google Scholar 

  5. Itkis, M. E., Borondics, F., Yu, A. P. & Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 312, 413–416 (2006).

    Article  CAS  Google Scholar 

  6. Balasubramanian, K. et al. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett. 84, 2400–2402 (2004).

    Article  CAS  Google Scholar 

  7. Lee, E. J. H. et al. Electronic-band-structure mapping of nanotube transistors by scanning photocurrent microscopy. Small 3, 2038–2042 (2007).

    Article  CAS  Google Scholar 

  8. Freitag, M. et al. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 7, 2037–2042 (2007).

    Article  CAS  Google Scholar 

  9. Ahn, Y. H., Tsen, A. W., Kim, B., Park, Y. W. & Park, J. Photocurrent imaging of p–n junctions in ambipolar carbon nanotube transistors. Nano Lett. 7, 3320–3323 (2007).

    Article  CAS  Google Scholar 

  10. Purewal, M. S. et al. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 98, 186808 (2007).

    Article  Google Scholar 

  11. Zhou, X., Park, J. Y., Huang, S., Liu, J. & McEuen, P. L. Band structure, phonon scattering and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95, 146805 (2005).

    Article  Google Scholar 

  12. Freitag, M., Martin, Y., Misewich, J. A., Martel, R. & Avouris, P. H. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003).

    Article  CAS  Google Scholar 

  13. Pankove, J. I. Optical Processes in Semiconductors (Dover Publications, 1975).

    Google Scholar 

  14. Chen, R. J. et al. Molecular photodesorption from single-walled carbon nanotubes. Appl. Phys. Lett. 79, 2258–2260 (2001).

    Article  CAS  Google Scholar 

  15. Islam, M. F., Milkie, D. E., Kane, C. L., Yodh, A. G. & Kikkawa, J. M. Direct measurement of the polarized optical absorption cross-section of single-wall carbon nanotubes. Phys. Rev. Lett. 93, 037404 (2004).

    Article  CAS  Google Scholar 

  16. Lauret, J. S. et al. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90, 057404 (2003).

    Article  Google Scholar 

  17. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004).

    Article  Google Scholar 

  18. Maune, H., Chiu, H. Y. & Bockrath, M. Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates. Appl. Phys. Lett. 89, 013109 (2006).

    Article  Google Scholar 

  19. Lee, J. S. et al. Origin of gate hysteresis in carbon nanotube field-effect transistors. J. Phys. Chem. C 111, 12504–12507 (2007).

    Article  CAS  Google Scholar 

  20. Bockrath, M. et al. Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283–285 (2001).

    Article  CAS  Google Scholar 

  21. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. Mater. Res. Soc. Bull. 28, 486–491 (2003).

    Article  CAS  Google Scholar 

  22. Obradovic, B. et al. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102 (2006).

    Article  Google Scholar 

  23. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  24. Berciaud, S., Cognet, L., Poulin, P., Weisman, R. B. & Lounis, B. Absorption spectroscopy of individual single-walled carbon nanotubes. Nano Lett. 7, 1203–1207 (2007).

    Article  CAS  Google Scholar 

  25. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  26. Pop, E. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes. Nanotechnology 19, 295202 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. M. Gabor and P. L. McEuen for helpful discussions. This work was supported by a grant from the Air Force Office of Scientific Research (FA9550-07-1-0338) and the National Science Foundation (NSF) CAREER grant (DMR-0748530). Sample fabrication was performed at the Cornell Nano-Scale Science and Technology Facility as well as at the Harvard Center for Nanoscale Systems' Nanofabrication Facility.

Author information

Authors and Affiliations

Authors

Contributions

A.W.T and J.P conceived the experiments, J.P designed the experimental apparatus and A.W.T performed the experiments and analysed the data with J.P. A.W.T., H.K. and L.A.K.D. fabricated the devices, and L.H.H. aided with the experiments. A.W.T. and J.P. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jiwoong Park.

Supplementary information

Supplementary Information

Supplementary Information (PDF 727 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsen, A., Donev, L., Kurt, H. et al. Imaging the electrical conductance of individual carbon nanotubes with photothermal current microscopy. Nature Nanotech 4, 108–113 (2009). https://doi.org/10.1038/nnano.2008.363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing