Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlled polytypic and twin-plane superlattices in iii–v nanowires

Abstract

Semiconductor nanowires show promise for use in nanoelectronics, fundamental electron transport studies, quantum optics and biological sensing. Such applications require a high degree of nanowire growth control, right down to the atomic level. However, many binary semiconductor nanowires exhibit a high density of randomly distributed twin defects and stacking faults, which results in an uncontrolled, or polytypic, crystal structure. Here, we demonstrate full control of the crystal structure of InAs nanowires by varying nanowire diameter and growth temperature. By selectively tuning the crystal structure, we fabricate highly reproducible polytypic and twin-plane superlattices within single nanowires. In addition to reducing defect densities, this level of control could lead to bandgap engineering and novel electronic behaviour.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dependence of InAs nanowire crystal structure on diameter from wurtzite (WZ) to zinc blende (ZB).
Figure 2: Influence of temperature on InAs nanowire crystal phase purity for different diameters.
Figure 3: Investigation of InAs coherent twin-plane superlattices by SEM, TEM and modelling.
Figure 4: Realization of a WZ–ZB polytypic superlattice.

References

  1. Nilsson, H. A., Thelander, C., Fröberg, L. E., Wagner, J. B. & Samuelson, L. Nanowire-based multiple quantum dot memory. Appl. Phys. Lett. 89, 163101 (2006).

    Article  Google Scholar 

  2. Duan, X., Huang, Y., Agarval, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–244 (2003).

    Article  Google Scholar 

  3. Wang, W. U., Chen, C., Lin, K. H., Fang, Y. & Lieber, C. M. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl Acad. Sci. USA 102, 3208–3212 (2005).

    Article  Google Scholar 

  4. Bao, J. et al. Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett. 8, 836–841 (2008).

    Article  Google Scholar 

  5. Stiles, M. D. & Hamann, D. R. Electron transmission through silicon stacking faults. Phys. Rev. B 41, 5280–5282 (1990).

    Article  Google Scholar 

  6. Stiles, M. D. & Hamann, D. R. Ballistic electron transmission through interfaces. Phys. Rev. B 38, 2021–2037 (1988).

    Article  Google Scholar 

  7. Ikonić, Z., Srivastava, G. P. & Inkson, J. C. Electronic structure of twinning superlattices. Surf. Sci. 307–309, 880–884 (1994).

    Article  Google Scholar 

  8. Ikonić, Z., Srivastava, G. P. & Inkson, J. C. Electronic properties of twin boundaries and twinning superlattices in diamond-type and zinc-blende-type semiconductors. Phys. Rev. B 48, 17181–17193 (1993).

    Article  Google Scholar 

  9. Moore, A. L., Saha, S. K., Prasher, R. S. & Shi, L. Phonon backscattering and thermal conductivity suppression in sawtooth nanowires. Appl. Phys. Lett. 93, 083112 (2008).

    Article  Google Scholar 

  10. Xiong, Q., Wang, J. & Eklund, P. C. Coherent twinning phenomena: Towards twinning superlattices iii–v semiconducting nanowires. Nano Lett. 6, 2736–2742 (2006).

    Article  Google Scholar 

  11. Qin, A. et al. Periodically twinned nanotowers and nanodendrites of mercury selenide synthesized via a solution–liquid–solid route. Adv. Mater. 20, 768–773 (2008).

    Article  Google Scholar 

  12. Li, Q. et al. Size-dependent periodically twinned ZnSe nanowires. Adv. Mater. 16, 1436–1440 (2004).

    Article  Google Scholar 

  13. Hao, Y., Meng, G., Wang, Z. L., Ye, C. & Zhang, L. Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor–liquid–solid growth. Nano Lett. 6, 1650–1655 (2006).

    Article  Google Scholar 

  14. Wang, Y. Q., Philipose, U., Xu, T., Ruda, H. E. & Kavanagh, K. L. Twinning modulation in ZnSe nanowires. Semicond. Sci. Technol. 22, 175–178 (2007).

    Article  Google Scholar 

  15. Trägårdh, J., Persson, A. I., Wagner, J. B., Hessman, D. & Samuelson, L. Measurements of the band gap of wurtzite InAs1–xPx nanowires using photocurrent spectroscopy. J. Appl. Phys. 101, 123701 (2007).

    Article  Google Scholar 

  16. Koguchi, M., Kakibayashi, H., Yazawa, M., Hiruma, K. & Katsuyama, T. Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn J. Appl. Phys. 31, 2061–2065 (1992).

    Article  Google Scholar 

  17. Joyce, H. J. et al. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett. 7, 921–926 (2007).

    Article  Google Scholar 

  18. Minot, E. D. et al. Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007).

    Article  Google Scholar 

  19. Johansson, J. et al. Effects of supersaturation on the crystal structure of gold seeded iii–v nanowires. Cryst. Growth Des. (in the press).

  20. Krishnamachari, et al. Defect-free InP nanowires grown in [001] direction on InP (001). Appl. Phys. Lett. 85, 2077–2079 (2004).

    Article  Google Scholar 

  21. Wacaser, B. A, Deppert, K., Karlsson, L. S., Samuelson, L. & Seifert, W. Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 287, 504–508 (2006).

    Article  Google Scholar 

  22. Thelander, C., Fröberg, L. E., Rehnstedt, C., Samuelson, L. & Wernersson, L.-E. Vertical enhancement-mode InAs nanowire field-effect transistor with 50-nm wrap gate. IEEE Electron. Device Lett. 29, 206–208 (2008).

    Article  Google Scholar 

  23. Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. N. & Loss, D. Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007).

    Article  Google Scholar 

  24. Flindt, C., Sørensen, A. S. & Flensberg, K. Spin–orbit mediated control of spin qubits. Phys. Rev. Lett. 97, 240501 (2006).

    Article  Google Scholar 

  25. Christensen, N. E., Satpathy, S. & Pawlowska, Z. Bonding and ionicity in semiconductors. Phys. Rev. B 36, 1032–1050 (1987).

    Article  Google Scholar 

  26. Abu-Farsakh, H. & Qteish, A. Ionicity scale based on the centers of maximally localized Wannier functions. Phys. Rev. B 75, 085201 (2007).

    Article  Google Scholar 

  27. Akiyama, T., Sano, K., Nakamura, K. & Ito, T. An empirical potential approach to wurtzite–zinc-blende polytypism in group iii–v semiconductor nanowires. J. Appl. Phys. 45, L275–L278 (2006).

    Article  Google Scholar 

  28. Wu, H., Cha, H.-Y., Chandrashekhar, M., Spencer, M. G. & Koley, G. High-yield GaN nanowire synthesis and field-effect transistor fabrication. J. Electron. Mater. 35, 670–674 (2006).

    Article  Google Scholar 

  29. Caroff, P. et al. High-quality InAs/InSb nanowire heterostructures grown by metal–organic vapor-phase epitaxy. Small 4, 878–882 (2008).

    Article  Google Scholar 

  30. Jeppsson, M. et al. GaAs/GaSb nanowire heterostructures grown by MOVPE. J. Cryst. Growth 310, 4115–4121 (2008).

    Article  Google Scholar 

  31. Johansson, J., Wacaser, B. A., Dick, K. A. & Seifert, W. Growth related aspects of epitaxial nanowires. Nanotechnology 17, S355–S361 (2006).

    Article  Google Scholar 

  32. Johansson, J. et al. Structural properties of 〈111〉B-oriented iii–v nanowires. Nature Mater. 5, 574–580 (2006).

    Article  Google Scholar 

  33. Glas, F., Harmand, J. C. & Patriarche, G. Why does wurtzite form in nanowires of iii–v zinc blende semiconductors? Phys. Rev. Lett. 99, 146101 (2007).

    Article  Google Scholar 

  34. Dubrovskii, V. G., Sibirev, N. V., Harmand, J. C. & Glas, F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B (in the press).

  35. Dubrovskii, V. G. & Sibirev, N. V. Growth thermodynamics of nanowires and its application to polytypism of zinc blende iii–v nanowires. Phys. Rev. B 77, 035414 (2008).

    Article  Google Scholar 

  36. Karlsson, L. S. et al. Understanding the 3D structure of GaAs 〈111〉B nanowires. Nanotechnology 18, 485717 (2007).

    Article  Google Scholar 

  37. Persson, A. I. et al. InAs1–xPx nanowires for device engineering. Nano Lett. 6, 403–407 (2006).

    Article  Google Scholar 

  38. Magnusson, M. H., Deppert, K., Malm, J.-O., Bovin, J.-O. & Samuelson, L. Size-selected gold nanoparticles by aerosol technology. NanoStruct. Mater. 12, 45–48 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bolinsson, J. B. Wagner, T. Mårtensson and other colleagues at the Nanometer Structure Consortium for many valuable discussions. K. Nilsson and H. Nilsson are acknowledged for producing electron-beam lithography patterns as templates for ordered arrays of twin-plane superlattice nanowires. This work was carried out within the Nanometer Structure Consortium in Lund and was supported by the Swedish Foundation for Strategic Research (SSF), the Swedish Research Council (VR), the European Community (EU contract no. 015783 NODE) and the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.C. and K.A.D. conceived, designed and performed the experiments and co-wrote the paper. J.J. and M.E.M. contributed materials and analysis tools. K.D. and L.S. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to P. Caroff or K. A. Dick.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3000 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caroff, P., Dick, K., Johansson, J. et al. Controlled polytypic and twin-plane superlattices in iii–v nanowires. Nature Nanotech 4, 50–55 (2009). https://doi.org/10.1038/nnano.2008.359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.359

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research