Abstract
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1,2,3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4,5,6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 µm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11,12,13,14,15,16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 µm, and then use it to demonstrate a 2.4 ps Er3+-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Full C-band wavelength-tunable, 250 MHz repetition rate mode-locked polarization-maintaining fiber laser
Scientific Reports Open Access 03 March 2023
-
Hot-carrier tunable abnormal nonlinear absorption conversion in quasi-2D perovskite
Nature Communications Open Access 14 November 2022
-
Nonlinear optical properties of arsenic telluride and its use in ultrafast fiber lasers
Scientific Reports Open Access 17 September 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Letokhov, V. S. Laser biology and medicine. Nature 316, 325–330 (1985).
Shah, J. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures 2nd edn (Springer-Verlag, 1999).
Keller, U. Recent developements in compact ultrafast lasers. Nature 424, 831–838 (2003).
Digonnet, M. J. F. Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2001).
Agrawal, G. P. Applications of Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
Keller, U. et al. Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quant. Electron. 2, 435–453 (1996).
Grange, R. et al. Nonlinear absorption edge properties of 1.3-μm GaInNAs saturable absorbers. Appl. Phys. Lett. 87, 132103 (2005).
Rutz, A. et al. Parameter tunable GaInNAs saturable absorbers for mode locking of solid-state lasers. J. Crys. Grow. 301–302, 570–574 (2007).
Calvez, S. et al. GaInNAs/GaAs Bragg-mirror-based structures for novel 1.3 µm device applications. J. Crys. Grow. 268, 457–465 (2004).
Rutz, A. et al. 1.5 µm GaInNAs semiconductor saturable absorber for passively modelocked solid-state lasers. Electron. Lett. 41, 321–323 (2005).
Set, S. Y., Yaguchi, H., Tanaka, Y. & Jablonski, M. Ultrafast fiber pulsed lasers incorporating carbon nanotubes. IEEE J. Sel. Top. Quant. Electron. 10, 137–146 (2004).
Nicholson, J. W., Windeler, R. S. & DiGiovanni, D. J. Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces. Opt. Express 15, 9176–9183 (2007).
Il'ichev, N. N., Obraztsova, E. D., Pashinin, P. P., Konov, V. I. & Garnov, S. V. Self-mode locking in a F2−:LiF laser by means of a passive switch based on single-wall carbon nanotubes. Quant. Electron. 34, 785–786 (2004).
Song, Y. W., Set, S. Y., Yamashita, S., Chee, S. G. & Kotake, T. 1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes. IEEE Photon. Tech. Lett. 17, 1623–1625 (2005).
Dalle Valle, G. et al. Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. Appl. Phys. Lett. 89, 231115 (2006).
Rozhin, A. G. et al. Generation of ultra-fast laser pulses using nanotube mode-lockers. Phys. Stat. Sol. (b) 243, 3551–3555 (2006).
Haiml, M. et al. Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies. Appl. Phys. Lett. 74, 3134–3136 (1999).
Jacobovitz-Veselka, G. R., Keller, U. & Asom, M. T. Broadband fast semiconductor saturable absorber. Opt. Lett. 17, 1791–1793 (1992).
Kopf, D., Prasad, A., Zhang, G., Moser, M. & Keller, U. Broadly tunable femtosecond Cr:LiSAF laser. Opt. Lett. 22, 621–623 (1997).
Kärtner, F. X., Jung, I. D. & Keller, U. Soliton mode-locking with saturable absorbers. IEEE J. Sel. Top. Quant. Electron. 2, 540–556 (1996).
Schön, S., Haiml, M. & Keller, U. Ultrabroadband AIGaAs/CaF2 semiconductor saturable absorber mirrors. Appl. Phys. Lett. 77, 782–784 (2000).
Fluck, R. et al. Broadband saturable absorber for 10-fs pulse generation. Opt. Lett. 21, 743–745 (1996).
Gomes, L. A., Orsila, L., Jouhti, T. & Okhotnikov, O. G. Picosecond SESAM-based ytterbium mode-locked fiber lasers. IEEE J. Sel. Top. Quant. Electron. 10, 129–136 (2004).
Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103, 2555–2558 (1999).
Sakakibara, Y., Tatsuura, S., Kataura, H., Tokumoto, M. & Achiba, Y. Near-infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation. Jpn J. Appl. Phys. 42, L494–L496 (2003).
Lauret, J. S. et al. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90, 057404 (2003).
Fong, K. H. et al. Solid-state Er:Yb:glass laser mode-locked by using single-wall carbon nanotube thin film. Opt. Lett. 32, 38–40 (2007).
Rozhin, A. G. et al. Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker. Appl. Phys. Lett. 88, 051118 (2006).
Song, Y. W., Yamashita, S., Goh, C. S. & Set, S. Y. Passively mode-locked lasers with 17.2-GHz fundamental-mode repetition rate pulsed by carbon nanotubes. Opt. Lett. 32, 430–432 (2007).
Schibli, T. et al. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express 13, 8025–8031 (2005).
Song, Y. W., Yamashita, S. & Maruyama, S. Single-walled carbon nanotubes for high-energy optical pulse formation. Appl. Phys. Lett. 92, 021115 (2008).
Kieu, K. & Mansuripur, M. Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite. Opt. Lett. 32, 2242–2244 (2007).
Garmire, E. Resonant optical nonlinearities in semiconductors. IEEE J. Sel. Top. Quant. Electron. 6, 1094–1110 (2000).
Snyder, A. W. & Love, J. D. Optical Waveguide Theory (Springer, 1983).
Tamura, K., Doerr, C. R., Haus, H. A. & Ippen, E. P. Soliton fiber ring laser stabilization and tuning with a broad intracavity filter. IEEE Photon. Technol. Lett. 6, 697–699 (1994).
Acknowledgements
We acknowledge funding from the Isaac Newton trust, The Royal Society-Brian Mercer Award for Innovation and the European Research Council Grant NANOPOTS.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, F., Rozhin, A., Scardaci, V. et al. Wideband-tuneable, nanotube mode-locked, fibre laser. Nature Nanotech 3, 738–742 (2008). https://doi.org/10.1038/nnano.2008.312
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2008.312
This article is cited by
-
Full C-band wavelength-tunable, 250 MHz repetition rate mode-locked polarization-maintaining fiber laser
Scientific Reports (2023)
-
Hot-carrier tunable abnormal nonlinear absorption conversion in quasi-2D perovskite
Nature Communications (2022)
-
Temporal solitons in a coherently driven active resonator
Nature Photonics (2021)
-
Study of the output characteristics of nonlinear optical loop mirror on an erbium-doped mode-locked fiber laser
Optoelectronics Letters (2021)
-
Starting monomer of graphdiyne–hexakis[(trimethylsilyl)ethynyl]benzene: a superior nonlinear absorption material
Journal of Materials Science (2021)