Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integration of photonic and silver nanowire plasmonic waveguides


Future optical data transmission modules will require the integration of more than 10,000 × 10,000 input and output channels to increase data transmission rates and capacity. This level of integration, which greatly exceeds that of a conventional diffraction-limited photonic integrated circuit, will require the use of waveguides with a mode confinement below the diffraction limit, and also the integration of these waveguides with diffraction-limited components1,2. We propose to integrate multiple silver nanowire plasmonic waveguides with polymer optical waveguides for the nanoscale confinement and guiding of light on a chip. In our device, the nanowires lay perpendicular to the polymer waveguide with one end inside the polymer. We theoretically predict and experimentally demonstrate coupling of light into multiple nanowires from the same waveguide, and also demonstrate control over the degree of coupling by changing the light polarization.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Two approaches to coupling light into silver nanowires.
Figure 2: Coupling of light from the waveguide to the nanowire.
Figure 3: Light does not couple to the nanowire when its ends are not exposed to the excitation fields.
Figure 4: Experimental observation of plasmon propagation in a single nanowire.
Figure 5: Microscope images illustrating experimental coupling of light from a polymer waveguide to multiple nanowires.


  1. Ohtsu, M., Kobayashi, K., Kawazoe, T., Sangu, S. & Yatsui, T. Nanophotonics: Design, fabrication and operation of nanometric devices using optical near-fields. IEEE J. Sel. Top. Quant. Electron. 8, 839–862 (2002).

    Article  CAS  Google Scholar 

  2. Yatsui, T., Kourogi, M. & Ohtsu, M. Plasmon waveguide for optical far/near-field conversion. Appl. Phys. Lett. 79, 4583–4585 (2001).

    Article  CAS  Google Scholar 

  3. Nomura, W., Ohtsu, M. & Yatsui, T. Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. Lett. 86, 181108 (2005).

    Article  Google Scholar 

  4. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  CAS  Google Scholar 

  5. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  6. Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    Article  CAS  Google Scholar 

  7. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometre diameter. Opt. Lett. 22, 475–477 (1997).

    Article  CAS  Google Scholar 

  8. Hochberg, M., Baehr-Jones, T., Walker, C. & Scherer, A. Integrated plasmon and dielectric waveguides. Opt. Express 12, 5481–5486 (2004).

    Article  Google Scholar 

  9. Nikolajsen, T., Leosson, K., Salakhutdinov, I. & Bozhevolnyi, S. I. Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths. Appl. Phys. Lett. 82, 668–670 (2003).

    Article  CAS  Google Scholar 

  10. Chen, L., Shakya, J. & Lipson, M. Subwavelength confinement in integrated metal slot waveguide on silicon. Opt. Lett. 31, 2133–2135 (2006).

    Article  CAS  Google Scholar 

  11. Veronis, G. & Fan, F. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal–dielectric–metal plasmonic waveguides. Opt. Express 15, 1211–1221 (2007).

    Article  Google Scholar 

  12. Brongersma, M. L., Zia, R. & Schuller, J. A. Plasmonics—the missing link between nanoelectronics and microphotonics. Appl. Phys. A 89, 221–223 (2007).

    Article  CAS  Google Scholar 

  13. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  CAS  Google Scholar 

  14. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  CAS  Google Scholar 

  15. Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095–6098 (2000).

    Article  CAS  Google Scholar 

  16. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005).

    Article  Google Scholar 

  17. Sanders, A. W. et al. Observation of plasmon propagation, redirection and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006).

    Article  CAS  Google Scholar 

  18. Weeber, J.-C., Dereux, A., Girard, C., Krenn, J. R. & Goudonnet, J. P. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B 60, 9061–9068 (1999).

    Article  CAS  Google Scholar 

  19. Enami, Y., Kawazu, M., Jen, A. K.-Y., Meredith, G. & Peyghambarian, N. Polarization-insensitive transition between sol–gel waveguide and electrooptic polymer and intensity modulation for all-optical networks. J. Lightwave Technol. 21, 2053–2060 (2003).

    Article  CAS  Google Scholar 

  20. Wiley, B., Sun, Y., Chen, J. & Xia, Y. Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) species. Langmuir 21, 8077–8080 (2005).

    Article  CAS  Google Scholar 

  21. Gra, A., Wagner, D., Ditlbacher, H. & Kreibig, U. Silver nanowires. Eur. Phys. J. D 34, 263–269 (2005).

    Article  Google Scholar 

  22. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  CAS  Google Scholar 

  23. Tao, A. et al. Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003).

    Article  CAS  Google Scholar 

  24. Cao, Y. et al. A technique for controlling the alignment of silver nanowires with an electric field. Nanotechnology 17, 2378–2380 (2006).

    Article  CAS  Google Scholar 

Download references


Y.X. was supported by the National Science Foundation (DMR-0451788) and is a Camille Dreyfus Teacher Scholar (2002–2007). B.W. was supported by an IGERT Fellowship from the Centre for Nanotechnology at the University of Washington. A.L.P. was supported by a Nanotech Fellowship from the Centre for Nanotechnology at the University of Washington. A.L.P, A.C. and L.D. were supported by the National Science Foundation (DMR-0120967).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Anna L. Pyayt.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pyayt, A., Wiley, B., Xia, Y. et al. Integration of photonic and silver nanowire plasmonic waveguides. Nature Nanotech 3, 660–665 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research