Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanomechanical detection of antibiotic–mucopeptide binding in a model for superbug drug resistance

Abstract

The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements have quantified binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide analogues. Moreover, by systematically modifying the mucopeptide density we gain new insights into the origin of surface stress. We propose that stress is a product of a local chemical binding factor and a geometrical factor describing the mechanical connectivity of regions activated by local binding in terms of a percolation process. Our findings place BioMEMS devices in a new class of percolative systems. The percolation concept will underpin the design of devices and coatings to significantly lower the drug detection limit and may also have an impact on our understanding of antibiotic drug action in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nanomechanical detection of vancomycin–mucopeptide analogue interactions on multiple cantilever arrays.
Figure 2: Investigation of the specificity and sensitivity of antibiotic–mucopeptide interactions on cantilever arrays.
Figure 3: Nanomechanical detection of antibiotics in blood serum at clinically relevant concentrations.
Figure 4: Nanomechanical drug–target percolation on cantilever arrays.
Figure 5: Concepts underpinning nanomechanical antibiotic transduction.

Similar content being viewed by others

References

  1. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  Google Scholar 

  2. McKendry, R. A. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

    Article  CAS  Google Scholar 

  3. Savran, C. A., Knudsen, S. M., Ellington, A. D. & Manalis, S. R. Micromechanical detection of proteins using aptamer-based receptor molecules. Anal. Chem. 76, 3194–3198 (2004).

    Article  CAS  Google Scholar 

  4. Calleja, M. et al. Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicrosc. 105, 215–222 (2005).

    Article  CAS  Google Scholar 

  5. Shu, W. et al. DNA molecular motor driven micromechanical cantilever arrays. J. Am. Chem. Soc. 127, 17054–17060 (2005).

    Article  CAS  Google Scholar 

  6. Watari, M. et al. Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 129, 601–609 (2007).

    Article  CAS  Google Scholar 

  7. Backmann, N. et al. A label-free immunosensor array using single-chain antibody fragments. Proc. Natl Acad. Sci. USA 102, 14587–14592 (2005).

    Article  CAS  Google Scholar 

  8. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotech. 1, 214–220 (2006).

    Article  CAS  Google Scholar 

  9. Wu, G. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol. 19, 856–860 (2001).

    Article  CAS  Google Scholar 

  10. Cooper, M. A. Advances in membrane receptor screening and analysis. J. Mol. Recognit. 17, 286–315 (2004).

    Article  CAS  Google Scholar 

  11. Rao, J. et al. Binding of a dimeric derivative of vancomycin to L-Lys-D-Ala-D-Lactate in solution and at a surface. Chem. Biol. 121, 353–359 (1999).

    Article  Google Scholar 

  12. Rao, J., Yan, L., Xu, B. & Whitesides, G. M. Using surface plasmon resonance to study the binding of vancomycin and its dimer to self-assembled monolayers presenting D-Ala-D-Ala. J. Am. Chem. Soc. 121, 2629–2630 (1999).

    Article  CAS  Google Scholar 

  13. Cooper, M. A., Fiorini, M. T., Abell, C. & Williams, D. H. Binding of vancomycin group antibiotics to D-alanine and D-lactate presenting self-assembled monolayers. Bioorg. Med. Chem. 8, 2609–2616 (2000).

    Article  CAS  Google Scholar 

  14. Vettiger, P. et al. Ultrahigh density, high-data-rate NEMS-based AFM data storage system. Microelec. Eng. 46, 11–14 (1999).

    Article  CAS  Google Scholar 

  15. Despont, M., Drechsler, U., Yu, R., Pogge H. B. & Vettiger, P. Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system. J. MEMS 13, 895–901 (2004).

    Article  CAS  Google Scholar 

  16. Williams, D. H. The glycopeptide story—How to kill the deadly ‘superbugs’. Nat. Prod. Rep. 13, 469–477 (1996).

    Article  CAS  Google Scholar 

  17. Williams, D. H., Maguire, A. J., Tsuzuki, W. & Westwell, M. S. An analysis of the origins of a cooperative binding energy of dimerization. Science 280, 711–714 (1998).

    Article  CAS  Google Scholar 

  18. Barna, J. C. & Williams, D. H. The structure and mode of action of glycopeptides antibiotics of the vancomycin group. Annu. Rev. Microbiol. 38, 339–357 (1984).

    Article  CAS  Google Scholar 

  19. Kahne, D., Leimkuhler, C., Wei, L. & Walsh, C. Glycopeptide and lipoglycopeptide antibiotics. Chem. Rev. 105, 425–448 (2005).

    Article  CAS  Google Scholar 

  20. Perkins, H. R. Specificity of combination between mucopeptide precursors and vancomycin or ristomycin. Biochem. J. 111, 195–205 (1969).

    Article  CAS  Google Scholar 

  21. Nieto, M. & Perkins, H. R. Modifications of acyl-d-alanyl-d-alanine terminus affecting complex-formation with vancomycin. Biochem. J. 123, 773–787 (1971).

    Article  CAS  Google Scholar 

  22. Mitchell, L. C. Changing patterns of infectious diseases. Nature 406, 762–767 (2000).

    Article  Google Scholar 

  23. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000).

    Article  CAS  Google Scholar 

  24. Neu, H. C. The crisis in antibiotic resistance. Science 257, 1064–1073 (1992).

    Article  CAS  Google Scholar 

  25. Bugg, T. D. H. et al. Molecular-basis for vancomycin resistance in Enterococcus faecium BM4147—biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30, 10408–10415 (1991).

    Article  CAS  Google Scholar 

  26. Hopwood, D. A call to arms. Nature Rev. Drug Discov. 6, 8–12 (2007).

    Article  CAS  Google Scholar 

  27. Ge, M. et al. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284, 507–510 (1999).

    Article  CAS  Google Scholar 

  28. Prime, K. L. & Whitesides, G. M. Self-assembled organic monolayers—model systems for studying adsorption of proteins at surfaces. Science 252, 1164–1167 (1991).

    Article  CAS  Google Scholar 

  29. Prime, K. L. & Whitesides, G. M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide)—a model system using self-assembled monolayers. J. Am. Chem. Soc. 115, 10714–10721 (1993).

    Article  CAS  Google Scholar 

  30. Lahiri, J., Isaacs, L., Tien, J. & Whitesides, G. M. A strategy for the generation of surfaces presenting ligands for studies of binding based on an active ester as a common reactive intermediate: A surface plasmon resonance study. Anal. Chem. 71, 777–790 (1999).

    Article  CAS  Google Scholar 

  31. Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. A 82, 172–175 (1909).

    Article  CAS  Google Scholar 

  32. Brantley, W. A. Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44, 534–535 (1973).

    Article  CAS  Google Scholar 

  33. Rotschafer, J. C. et al. Pharmacokinetics of vancomycin: Observations in 28 patients and dosage recommendations. Antimicrob. Agents Chemother. 22, 391–394 (1982).

    Article  CAS  Google Scholar 

  34. Stauffer, D. & Aharony, A. Introduction to Percolation Theory 2nd edn (Taylor and Francis, 1991).

    Google Scholar 

  35. Benguigui, L. Experimental study of the elastic properties of a percolating system. Phys. Rev. Lett. 53, 2028–2030 (1984).

    Article  Google Scholar 

  36. Sieradzki, K. & Li, R. Fracture behaviour of a solid with random porosity. Phys. Rev. Lett. 56, 2509–2512 (1986).

    Article  CAS  Google Scholar 

  37. Sushko, M. L., Harding, J. H., Shluger, A. L., McKendry, R. A. & Watari, M. Physics of nanomechanical biosensing on cantilever arrays. Adv. Mater. (in the press).

  38. Folkers, J. P., Hibinis, R. E. & Whitesides, G. M. Phase behaviour of two-component self- assembled monolayers of alkanethiolates on gold. J. Phys. Chem. 98, 563–571 (1994).

    Article  CAS  Google Scholar 

  39. Smith, R. et al. Phase separation within a binary self-assembled monolayer on Au{111} driven by an amide-containing alkanethiol. J. Phys. Chem. B 105, 1119–1122 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Engineering and Physical Sciences Research Council (Speculative Engineering funding programme, J.W.N, R.McK., G.A., M.W., D.Z.), Interdisciplinary Research Centre in Nanotechnology (Cambridge, UCL and Bristol, M.W., J.W.N., R.McK.), the Royal Society (R.McK., J.W.N.), Biotechnology and Biological Science Research Council (R.McK.), the Wolfson Foundation (G.A.) and Cancer Research UK (A.D.B.). We thank E. Smith (University of Nottingham EPSRC XPS Open Access scheme) and J. and R. Galbraith (UCL Statistics) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.W.N. and M.W. contributed equally to this manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rachel A. McKendry.

Supplementary information

Supplementary Information

Supplementary Information (PDF 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndieyira, J., Watari, M., Barrera, A. et al. Nanomechanical detection of antibiotic–mucopeptide binding in a model for superbug drug resistance. Nature Nanotech 3, 691–696 (2008). https://doi.org/10.1038/nnano.2008.275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing