Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bottom-up assembly of large-area nanowire resonator arrays

Abstract

Directed-assembly of nanowire-based devices1 will enable the development of integrated circuits with new functions that extend well beyond mainstream digital logic. For example, nanoelectromechanical resonators are very attractive for chip-based sensor arrays2 because of their potential for ultrasensitive mass detection3,4,5,6. In this letter, we introduce a new bottom-up assembly method to fabricate large-area nanoelectromechanical arrays each having over 2,000 single-nanowire resonators. The nanowires are synthesized and chemically functionalized before they are integrated onto a silicon chip at predetermined locations. Peptide nucleic acid probe molecules attached to the nanowires before assembly maintain their binding selectivity and recognize complementary oligonucleotide targets once the resonator array is assembled. The two types of cantilevered resonators we integrated here using silicon and rhodium nanowires had Q-factors of 4,500 and 1,150, respectively, in vacuum. Taken together, these results show that bottom-up nanowire assembly can offer a practical alternative to top-down fabrication for sensitive chip-based detection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bottom-up integration scheme used to fabricate NW resonator arrays.
Figure 2: Fabricated Si- and RhNW resonator arrays and selective binding of oligonucleotide targets.
Figure 3: Resonant response at room temperature and high vacuum (5 × 10−10 atm) using an electrical drive method.
Figure 4: Pressure-dependence of NW resonator spectra.

Similar content being viewed by others

References

  1. Lieber, C. M. & Wang, Z. L. Functional nanowires. MRS Bull. 32, 99–108 (2007).

    Article  CAS  Google Scholar 

  2. Zheng, G. F. et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    Article  CAS  Google Scholar 

  3. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe, and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    Article  CAS  Google Scholar 

  4. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article  CAS  Google Scholar 

  5. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  CAS  Google Scholar 

  6. Lavrik, N. V., Sepaniak M. J. & Datskos, P. G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75, 2229–2253 (2004).

    Article  CAS  Google Scholar 

  7. Wang, Y. et al. Use of phosphine as an n-type dopant source for vapor–liquid–solid growth of silicon nanowires. Nano Lett. 5, 2139–2143 (2005).

    Article  CAS  Google Scholar 

  8. Tian, M. et al. Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett. 3, 919–923 (2003).

    Article  CAS  Google Scholar 

  9. Keating, C. D. & Natan, M. J. Striped metal nanowires as building blocks and optical tags. Adv. Mater. 15, 451–454 (2003).

    Article  CAS  Google Scholar 

  10. Xia, Y. et al. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  11. Smith, P. A. et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    Article  CAS  Google Scholar 

  12. Huang, Y., Duan, X., Wei, Q. & Lieber C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 26, 630–633 (2001).

    Article  Google Scholar 

  13. Whang, D., Jin, S., Wu, Y. & Lieber C. M. Large-scale hierarchial organization of nanowire arrays for integrated nanosystems. Nano Lett. 3, 1255–1259 (2003).

    Article  CAS  Google Scholar 

  14. Huang, J., Fan, R., Connor, S. & Yang, P. One-step patterning of aligned nanowire arrays by programmed dip coating, Angew. Chem. Int. Edn 46, 2414–2417 (2007).

    Article  CAS  Google Scholar 

  15. Liu, M. et al. Self-assembled magnetic nanowire arrays. Appl. Phys. Lett. 90, 103105 (2007).

    Article  Google Scholar 

  16. Yin Y. et al. Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sized, shapes, and structures. J. Am. Chem. Soc. 123, 8718–8729 (2001).

    Article  CAS  Google Scholar 

  17. Husain, A. et al. Nanowire-based very-high-frequency electromechanical resonator. Appl. Phys. Lett. 83, 1240–1242 (2003).

    Article  CAS  Google Scholar 

  18. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  CAS  Google Scholar 

  19. Davis, Z. J. & Boisen, A. Aluminum nanocantilevers for high sensitivity mass sensors. Appl. Phys. Lett. 87, 013102 (2005).

    Article  Google Scholar 

  20. Fang, W. & Wickert, J. A. Determining mean and gradient residual stresses in thin films using micromachined cantilevers. J. Micromech. Microeng. 6, 301–309 (1996).

    Article  CAS  Google Scholar 

  21. Sioss, J. A., Stoermer, R. L., Sha, M. Y. & Keating, C. D. Silica coated, Au/Ag striped nanowires for bioanalysis. Langmuir 23, 11334–11341 (2007).

    Article  CAS  Google Scholar 

  22. Cui, Y., Wei Q. Q., Park H. K. & Lieber C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  23. Sahai, T. S., Bhiladvala, R. B. & Zehnder, A. T. Thermomechanical transitions in doubly-clamped micro-oscillators. Int. J. Nonlinear Mech. 42, 596–607 (2007).

    Article  Google Scholar 

  24. Kouh, T., Karabacak, D., Kim, D. H. & Ekinci, K. L. Diffraction effects in optical interferometric displacement detection in nanoelectromechanical systems. Appl. Phys. Lett. 86, 013106 (2005).

    Article  Google Scholar 

  25. Blevins R. D. Formulas for Natural Frequency and Mode Shape (Robert E. Krieger Publishing Company, Malabar, FL, 1986).

    Google Scholar 

  26. Anastassakis, E. & Siakavellas, M. Elastic properties of textured diamond and silicon. J. Appl. Phys. 90, 144–152 (2001).

    Article  CAS  Google Scholar 

  27. Heidelberg, A. et al. A generalized description of the elastic properties of nanowires. Nano Lett. 6, 1101–1106 (2006).

    Article  CAS  Google Scholar 

  28. Li, M., Mayer, T. S., Sioss, J. A., Keating, C. D. & Bhiladvala, R. B. Template-grown metal nanowires as resonators: performance and characterization of dissipative and elastic properties. Nano Lett. 7, 3281–3284 (2007).

    Article  CAS  Google Scholar 

  29. Bhiladvala, R. B. & Wang Z. J. Effect of fluids on the Q-factor and resonance frequency of oscillating micrometer and nanometer scale beams. Phys. Rev. E 69, 036307 (2004).

    Article  Google Scholar 

  30. Schaaf, S. & Chambre, P. Flow of Rarefied Gases (Princeton Univ. Press, Princeton, NJ, 1961).

    Google Scholar 

Download references

Acknowledgements

We acknowledge primary support from the National Institutes of Health (CA118591). Additional support was provided by the National Science Foundation (DMR-0213623, CHE-0304575, CCR-0303976), and Tobacco Settlement funds from the Pennsylvania Department of Health, which specifically disclaims responsibility for any analyses, interpretations, or conclusions. C.D.K. received partial support from the National Institutes of Health (R01 EB00268). The authors also acknowledge use of facilities at the Penn State University site of the National Science Foundation National Nanotechnology Infrastructure Network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rustom B. Bhiladvala or Theresa S. Mayer.

Supplementary information

Supplementary Information

Supplementary figures S1-S5 and supplementary table S1 (PDF 303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Bhiladvala, R., Morrow, T. et al. Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotech 3, 88–92 (2008). https://doi.org/10.1038/nnano.2008.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.26

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing