Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-yield production of graphene by liquid-phase exfoliation of graphite

Abstract

Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to 0.01 mg ml−1, produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent–graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of 1 wt%, which could potentially be improved to 7–12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Optical characterization of graphite dispersions.
Figure 2: Electron microscopy of graphite and graphene.
Figure 3: Evidence of monolayer graphene from TEM.
Figure 4: Evidence for defect-free graphene.

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  4. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  5. Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

    Article  CAS  Google Scholar 

  6. Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Article  Google Scholar 

  7. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  8. Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Article  CAS  Google Scholar 

  9. Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 1, 016602 (2008).

    Article  Google Scholar 

  10. Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

    Article  CAS  Google Scholar 

  11. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  12. Ohta, T. et al. Morphology of graphene thin film growth on SiC(0001). New J. Phys. 023034 (2008).

  13. Zhou, S. Y. et al. Origin of the energy bandgap in epitaxial graphene—Reply. Nature Mater. 7, 259–260 (2008).

    Article  CAS  Google Scholar 

  14. Marchini, S., Gunther, S. & Wintterlin, J. Scanning tunnelling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007).

    Article  Google Scholar 

  15. de Parga, A. L. V. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 1, 056807 (2008).

    Article  Google Scholar 

  16. Sutter, P. W., Flege, J.–I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).

    Article  CAS  Google Scholar 

  17. Pan, Y. et al. Millimetre-scale, highly ordered single crystalline graphene grown on Ru (0001) surface. ArXiv:0709.2858 (2008).

  18. Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

    Article  CAS  Google Scholar 

  19. Li, D. et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

    Article  CAS  Google Scholar 

  20. Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    Article  CAS  Google Scholar 

  21. Wang, X., Zhi, L. J. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

    Article  CAS  Google Scholar 

  22. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  23. Jung, I. et al. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007).

    Article  CAS  Google Scholar 

  24. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).

    Article  CAS  Google Scholar 

  25. Viculis, L. M., Mack, J. J. & Kaner, R. B. A chemical route to carbon nanoscrolls. Science 299, 1361–1361 (2003).

    Article  CAS  Google Scholar 

  26. Chen, G. H. et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42, 753–759 (2004).

    Article  CAS  Google Scholar 

  27. Li, X. L. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article  CAS  Google Scholar 

  28. Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).

    Article  CAS  Google Scholar 

  29. Furtado, C. A. et al. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc. 126, 6095–6105 (2004).

    Article  CAS  Google Scholar 

  30. Giordani, S. et al. Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J. Phys. Chem. B 110, 15708–15718 (2006).

    Article  CAS  Google Scholar 

  31. Landi, B. J., Ruf, H. J., Worman, J. J. & Raffaelle, R. P. Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J. Phys. Chem. B 108, 17089–17095 (2004).

    Article  CAS  Google Scholar 

  32. Hasan, T. et al. Stabilization and ‘Debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 111, 12594–12602 (2007).

    Article  CAS  Google Scholar 

  33. Bergin, S. D. et al. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology 18, 455705 (2007).

    Article  Google Scholar 

  34. Bergin, S. D. et al. Towards solutions of SWNT in common solvents. Adv. Mater. 20, 1876–1881 (2007).

    Article  Google Scholar 

  35. Abergel, D. S. L. & Fal'ko, V. I. Optical and magneto-optical far-infrared properties of bi-layer graphene. Phys. Rev. B 75, 155430 (2007).

    Article  Google Scholar 

  36. Hildebrand, J. H., Prausnitz, J. M. & Scott, R. L. Regular and related solutions 1st edn (Van Nostrand Reinhold Company, New York, 1970).

    Google Scholar 

  37. Lyklema, J. The surface tension of pure liquids—thermodynamic components and corresponding states. Coll. Surf. A 156, 413–421 (1999).

    Article  CAS  Google Scholar 

  38. Tsierkezos, N. G. & Filippou, A. C. Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15 K. J. Chem. Therm. 38, 952–961 (2006).

    Article  CAS  Google Scholar 

  39. Benedict, L. X. et al. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286, 490–496 (1998).

    Article  CAS  Google Scholar 

  40. Girifalco, L. A. & Good, R. J. A theory for the estimation of surface and interfacial energies. 1. Derivation and application to interfacial tension. J. Phys. Chem. 61, 904–909 (1957).

    Article  CAS  Google Scholar 

  41. Hodak, M. & Girifalco, L. A. Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes. Chem. Phys. Lett. 350, 405–411 (2001).

    Article  CAS  Google Scholar 

  42. Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69, 155406 (2004).

    Article  Google Scholar 

  43. Jeong, S. H. et al. Preparation of aligned carbon nanotubes with prescribed dimensions: Template synthesis and sonication cutting approach. Chem. Mater. 14, 1859–1862 (2002).

    Article  CAS  Google Scholar 

  44. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  CAS  Google Scholar 

  45. Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).

    Article  CAS  Google Scholar 

  46. Horiuchi, S. et al. Carbon nanofilm with a new structure and property. Jpn J. Appl. Phys. Lett. 42, L1073–L1076 (2003).

    Article  CAS  Google Scholar 

  47. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  48. Blighe, F. M., Hernandez, Y., Blau, W. J. & Coleman, J. N. Observation of percolation-like scaling, far from the percolation threshold, in high volume fraction, high conductivity polymer–nanotube composite films. Adv. Mater. 19, 4443–4447 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Centre for Research on Adaptive Nanostructures and Nanodevices and Science Foundation Ireland for financial support and Nacional de Grafite (Brazil) for supplying flake graphite. V.N. wishes to thank the EU project ESTEEM for facilitating access to the microscopy facilities in Oxford. A.C.F. acknowledges funding from the Leverhulme Trust and the Royal Society.

Author information

Authors and Affiliations

Authors

Contributions

J.N.C. conceived and designed the experiments. Y.H., V.N., M.L., F.M.B., Z.S., S.D., B.H., M.B., P.N., S.K., R.G. and V.S. performed the experiments. I.T.McG., R.G., A.C.F. and J.N.C. analysed the data. Y.K.G., J.J.B., G.D., R.G., J.H., A.C.F. and J.N.C. contributed materials/analysis tools. A.C.F. and J.N.C. co-wrote the paper. Y.H. and V.N. contributed equally to this work. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jonathan N. Coleman.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hernandez, Y., Nicolosi, V., Lotya, M. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech 3, 563–568 (2008). https://doi.org/10.1038/nnano.2008.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.215

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research