Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrasensitive hot-electron nanobolometers for terahertz astrophysics


The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang1. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe2,3. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers—devices for measuring the energy of electromagnetic radiation—with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment; second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron–phonon interactions, becomes very small at low temperatures (1 × 10−16 W K−1 at 40 mK). These devices, with a heat capacity of 1 × 10−19 J K−1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Background-limited detector sensitivity for THz spectroscopy in space.
Figure 2: Fabrication of titanium nanobolometers.
Figure 3: Thermal conductance for hot-electron nanobolometers.
Figure 4: The time constants in hot-electron nanobolometers.

Similar content being viewed by others


  1. Blain, A. W., Smail, I., Ivison, R. J., Kneib, J.-P. & Frayer, D. T. Submillimetre galaxies. Phys. Rep. 369, 111–176 (2002).

    Article  Google Scholar 

  2. Benford, D. J., Amato, M. J., Mather, J. C., Moseley, S. H. & Leisawitz, D. T. Mission concept for the single aperture far-infrared (SAFIR) observatory. Astrophys. Space Sci. 294, 177–212 (2004).

    Article  Google Scholar 

  3. Bradford, C. M. & Nakagawa, T. The future is BLISS — sensitive far-IR spectroscopy on SPICA and SAFIR. New Astron. Rev. 50, 221–227 (2006).

    Article  Google Scholar 

  4. Langley, S. P. The bolometer and radiant energy. Proc. Am. Ac. Arts Sci. 16, 342–358 (1881).

    Article  Google Scholar 

  5. Sergeev, A. V., Mitin, V. V. & Karasik, B. S. Ultrasensitive hot-electron kinetic-inductance detectors operating well below superconducting transition. Appl. Phys. Lett. 80, 817–819 (2002).

    Article  CAS  Google Scholar 

  6. Day, P. K., LeDuc, H. G., Mazin, B. A., Vayonakis, A. & Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 425, 817–821 (2003).

    Article  CAS  Google Scholar 

  7. Komiyama, S., Astafiev, O., Antonov, V., Kutsuwa, T. & Hirai, H. A single-photon detector in the far-infrared range. Nature 403, 405–407 (2000).

    Article  CAS  Google Scholar 

  8. Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006).

    Article  CAS  Google Scholar 

  9. Schmidt, D. R., Schoelkopf, R. J. & Cleland, A. N. Photon-mediated thermal relaxation of electrons in nanostructures. Phys. Rev. Lett. 93, 045901 (2004).

    Article  CAS  Google Scholar 

  10. Ojanen, T. & Heikkila, T. T. Photon heat transport in low-dimensional nanostructures. Phys. Rev. B 76, 073414 (2007).

    Article  Google Scholar 

  11. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    Article  CAS  Google Scholar 

  12. Schwab, K. Quantum physics: information on heat. Nature 444, 161–162 (2006).

    Article  CAS  Google Scholar 

  13. Kenyon, M., Day, P. K., Bradford, C. M., Bock, J. J. & Leduc, H. G. Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy. Proc. SPIE 6275, 627508 (2006).

    Article  Google Scholar 

  14. Karasik, B. S., McGrath, W. R., LeDuc, H. G. & Gershenson, M. E. A hot-electron direct detector for radioastronomy. Supercond. Sci. Technol. 12, 745–747 (1999).

    Article  CAS  Google Scholar 

  15. Gershenzon, E. M., Gershenzon, M. E., Goltsman, G. N., Semyonov, A. D. & Sergeyev, A.V. Heating of electrons in a superconductor in the resistive state by electromagnetic radiation. Zh. Eksp. Teor. Fiz. 86, 758–773 (1984) [Sov. Phys. JETP 59, 442–450 (1984)].

    CAS  Google Scholar 

  16. Wellstood, F. C., Urbina, C. & Clarke, J. Hot-electron effects in metals. Phys. Rev. B 49, 5942–5955 (1994).

    Article  CAS  Google Scholar 

  17. Karasik, B. S. et al. Record low NEP in the hot-electron titanium nanobolometers. IEEE Trans. Appl. Supercond. 17, 293–297 (2007).

    Article  CAS  Google Scholar 

  18. Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Zh. Eksp. Teor. Fiz. 46, 1823–1828 (1964) [Sov. Phys. JETP 19, 1228–1231 (1964)].

    CAS  Google Scholar 

  19. Wei, J. Hot-Electron Effects, Energy Transport and Decoherence in Nano-systems at Low Temperatures. PhD thesis, Rutgers Univ. (2007).

  20. Sergeev, A. V. & Mitin, V. Electron–phonon interaction in disordered conductors: Static and vibrating scattering potentials. Phys. Rev. B 61, 6041–6047 (2000).

    Article  CAS  Google Scholar 

  21. Karvonen J. T. & Maasilta I. J. Influence of phonon dimensionality on electron energy relaxation. Phys. Rev. Lett. 99, 145503 (2007).

    Article  CAS  Google Scholar 

  22. Gershenson, M. E., Gong, D., Sato, T., Karasik, B. S. & Sergeev, A. V. Millisecond electron–phonon relaxation in ultrathin disordered metal films at millikelvin temperatures. Appl. Phys. Lett. 79, 2049–2051 (2001).

    Article  CAS  Google Scholar 

  23. Irwin, K. D. An application of electrothermal feedback for high resolution cryogenic particle detection. Appl. Phys. Lett. 66, 1998–2000 (2005).

    Article  Google Scholar 

  24. Karasik, B. S. & Sergeev, A. V. THz hot-electron photon counter. IEEE Trans. Appl. Supercond. 15, 618–621 (2005).

    Article  Google Scholar 

  25. Semenov, A. D. et al. Terahertz performance of integrated lens antennas with a hot-electron bolometer. IEEE Trans. Microwave Theory Tech. 55, 239–247 (2007).

    Article  Google Scholar 

  26. Irwin, K. D. Seeing with superconductors. Sci. Am. 295, 86–92 (November 2006).

    Article  CAS  Google Scholar 

  27. Roukes, M. L. Yoctocalorimetry: phonon counting in nanostructures. Physica B 263–264, 1–15 (1999).

    Article  Google Scholar 

  28. Leinhert, Ch. et al. The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Suppl. Ser. 127, 1–99 (1998).

    Article  Google Scholar 

Download references


We thank J.H. Kawamura at JPL/Caltech for help with the experiments. The work at Rutgers was supported in part by the National Aeronautics and Space Administration (NASA) grant NNG04GD55G, the Rutgers Academic Excellence Fund, and the NSF grant ECS-0608842. The research at the Jet Propulsion Laboratory, California Institute of Technology, was carried out under a contract with NASA. The work at SUNY at Buffalo was supported by NY STAR and NATO grants.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Boris S. Karasik or Michael E. Gershenson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Olaya, D., Karasik, B. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nature Nanotech 3, 496–500 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing