Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Prediction of very large values of magnetoresistance in a graphene nanoribbon device

Abstract

Graphene has emerged as a versatile material with outstanding electronic properties1,2,3,4 that could prove useful in many device applications. Recently, the demonstration of spin injection into graphene and the observation of long spin relaxation times and lengths have suggested that graphene could play a role in ‘spintronic’ devices that manipulate electron spin rather than charge5,6,7,8. In particular it has been found that zigzag graphene nanoribbons have magnetic (or spin) states at their edges, and that these states can be either antiparallel or parallel9,10,11,12,13,14,15,16. Here we report the results of first-principles simulations that predict that spin-valve devices based on graphene nanoribbons will exhibit magnetoresistance values that are thousands of times higher than previously reported experimental values17,18,19. These remarkable values can be linked to the unique symmetry of the band structure in the nanoribbons. We also show that it is possible to manipulate the band structure of the nanoribbons to generate highly spin-polarized currents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene-based spin-valve device.
Figure 2: Bias-dependent transmission curves.
Figure 3: Current–voltage characteristics.
Figure 4: Spin-polarized currents in the AP configuration.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  3. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  CAS  Google Scholar 

  4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  5. Hill, E. W., Geim, A. K., Novoselov, K., Schedin, F. & Blake, P. Graphene spin valve devices. IEEE Trans. Magn. 42, 2694–2696 (2006).

    Article  Google Scholar 

  6. Ohishi, M. et al. Spin injection into a graphene thin film at room temperature. Jpn. J. Appl. Phys. 46, L605–L607 (2007).

    Article  CAS  Google Scholar 

  7. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & Wees, B. J. V. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  CAS  Google Scholar 

  8. Cho S., Chen Y. & Fuhrer, M. S. Gate-tunable graphene spin valve. Appl. Phys. Lett. 91, 123105 (2007).

    Article  Google Scholar 

  9. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 7, 1920–1923 (1996).

    Article  Google Scholar 

  10. Okada, S. & Oshiyama, A. Magnetic ordering in hexagonally bonded sheets with first-row elements. Phys. Rev. Lett. 87, 146803 (2001).

    Article  CAS  Google Scholar 

  11. Lee, H., Son, Y. W., Park, N., Han, S. W. & Yu, J. J. Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. Phys. Rev. B 72, 174431 (2005).

    Article  Google Scholar 

  12. Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006).

    Article  CAS  Google Scholar 

  13. Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  14. Yang L., Park, C. Son, Y. W., Cohen, M. L. & Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).

    Article  Google Scholar 

  15. Hod, O., Barone, V., Peralta, J. E. & Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7, 2295–2299 (2007).

    Article  CAS  Google Scholar 

  16. Pisani, L. Chan, J. A., Montanari, B. & Harrison, N. M. Electronic structure and magnetic properties of graphitic ribbons. Phys. Rev. B 75, 064418 (2007).

    Article  Google Scholar 

  17. Parkin, S. S. P. et al. Giant tunneling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Mater. 3, 862–867 (2004).

    Article  CAS  Google Scholar 

  18. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868–871 (2004).

    Article  CAS  Google Scholar 

  19. Chopra, H. D. et al., The quantum spin-valve in cobalt atomic point contacts. Nature Mater. 4, 832–837 (2005).

    Article  CAS  Google Scholar 

  20. Williams, J. R., DiCarlo, L. & Marcus, C. M. Quantum hall effect in a gate-controlled p-n junction of graphene. Science 317, 638–641 (2007).

    Article  CAS  Google Scholar 

  21. Huard, B. et al. Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007).

    Article  CAS  Google Scholar 

  22. Ozyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 99, 166804 (2007).

    Article  Google Scholar 

  23. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  24. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Article  CAS  Google Scholar 

  25. Cheng, D., Kim, W. Y., Min, S. K., Nautiyal, T. & Kim, K. S. Magic structures and quantum conductance of [110] silver nanowires. Phys. Rev. Lett. 96, 096104 (2006).

    Article  Google Scholar 

  26. Kim, W. Y. & Kim, K. S. Carbon nanotube, graphene, nanowire, and molecule based electron and spin transport phenomena using the non-equilibrium Green's function method at the level of first principles theory. J. Comput. Chem. 29, 1073–1083 (2008).

    Article  CAS  Google Scholar 

  27. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  CAS  Google Scholar 

  28. Egelhoff, W. Jr et al. Artifacts in ballistic magnetoresistance measurements (invited). J. Appl. Phys. 95, 7554–7559 (2004).

    Article  CAS  Google Scholar 

  29. Hod, O., Peralta, J. E. & Scuseria, G. E. Edge effects in finite elongated graphene nanoribbons. Phys. Rev. B 76, 233401 (2007).

    Article  Google Scholar 

  30. Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 329, 1229–1232 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Research Lab Project (KICOS) and Brain Korea 21. We thank M. L. Cohen, Y.H. Kim, Y. Son, J.H. Shim, B.I. Min, H.W. Lee, S.K. Kwon and A.W. Leonard for reading the manuscript and providing comments. Calculations were performed with KISTI supercomputers.

Author information

Authors and Affiliations

Authors

Contributions

W.Y.K. and K.S.K. conceived and designed the simulations. W.Y.K. developed the program code used in the transmission calculations and performed the calculations. W.Y.K. and K.S.K. discussed the results and co-wrote the paper.

Corresponding author

Correspondence to Kwang S. Kim.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W., Kim, K. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nature Nanotech 3, 408–412 (2008). https://doi.org/10.1038/nnano.2008.163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.163

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing