Abstract
Nanoscale metal/oxide/metal switches have the potential to transform the market for nonvolatile memory and could lead to novel forms of computing. However, progress has been delayed by difficulties in understanding and controlling the coupled electronic and ionic phenomena that dominate the behaviour of nanoscale oxide devices. An analytic theory of the ‘memristor’ (memory-resistor) was first developed from fundamental symmetry arguments in 1971, and we recently showed that memristor behaviour can naturally explain such coupled electron–ion dynamics. Here we provide experimental evidence to support this general model of memristive electrical switching in oxide systems. We have built micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching. We demonstrate that switching involves changes to the electronic barrier at the Pt/TiO2 interface due to the drift of positively charged oxygen vacancies under an applied electric field. Vacancy drift towards the interface creates conducting channels that shunt, or short-circuit, the electronic barrier to switch ON. The drift of vacancies away from the interface annilihilates such channels, recovering the electronic barrier to switch OFF. Using this model we have built TiO2 crosspoints with engineered oxygen vacancy profiles that predictively control the switching polarity and conductance.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Vogel, E. M. Technology and metrology of new electronic materials and devices. Nature Nanotech. 2, 25–32 (2007).
Szot, K. et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nature Mater. 5, 312–320 (2006).
Aono, M. et al. Quantized conductance atomic switch. Nature 433, 47–50 (2005).
Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–116 (1965).
Mead, C. Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA, 1989).
Boahen, K. Neuromorphic microchips. Sci. Am. 292, 56–63 (2005).
Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).
Watanabe, Y. et al. Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl. Phys. Lett. 78, 3738–3740 (2001).
Chopra, K. L. Avalanche-induced negative resistance in thin oxide films. J. Appl. Phys. 36, 184–187 (1965).
Simmons, J. G. & Verderber, R. R. New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. Lond. A 301, 77–102 (1967).
Rozenberg, M. J., Inoue, I. H. & Sánchez, M. J. Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92, 178302 (2004).
Chen, X., Wu, N., Strozier, J. & Ignatiev, A. Spatially extended nature of resistive switching in perovskite oxide thin films. Appl. Phys. Lett. 89, 063507 (2006).
Fors, R., Khartsev, S. I. & Grishin, A. M. Giant resistance switching in metal–insulator–manganite junctions: evidence for Mott transition. Phys. Rev. B 71, 045305 (2005).
Rohde, C. et al. Identification of a determining parameter for resistive switching of TiO2 thin films. Appl. Phys. Lett. 86, 262907 (2005).
Liu, S. Q.,Wu, N. J. & Ignatiev, A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl. Phys. Lett. 76, 2749–2751 (2000).
Nian, Y. B., Strozier, J., Wu, N. J., Chen, X. & Ignatiev, A. Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007).
Jeon, S. H., Park, B. H., Lee, J., Lee, B. & Han, S. First-principles modeling of resistance switching in perovskite oxide material. Appl. Phys. Lett. 89, 042904 (2006).
Jameson, J. R. et al. Field-programmable rectification in rutile TiO2 crystals. Appl. Phys. Lett. 91, 112101 (2007).
Sawa, A., Fujii, T., Kawasaki, M. & Tokura, Y. Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073–4075 (2004).
Tsui, S., Wang, Y. Q., Xue, Y. Y. & Chu, C. W. Mechanism and scalability in resistive switching of metal-Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 89, 123502 (2006).
Baikalov, A. et al. Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83, 957–959 (2003).
Kim, K. M., Choi, B. J., Shin, Y. C., Choi, S. & Hwang, C. S. Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. Appl. Phys. Lett. 91, 012907 (2007).
Fujii, T., Kawasaki, M., Sawa, A. & Akoh, H. Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3 . Appl. Phys. Lett. 86, 012107 (2005).
Tsunoda, K. et al. Bipolar resistive switching in polycrystalline TiO2 films. Appl. Phys. Lett. 90, 113501 (2007).
Lee, D. et al. Resistance switching of copper doped MoOx films for nonvolatile memory applications. Appl. Phys. Lett. 90, 122104 (2007).
Jung, G. Y. et al. Fabrication of a 34 × 34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography. Nano Lett. 4, 1225–1229 (2004).
Jung, G. Y. et al. Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. Nano Lett. 6, 351–354 (2006).
Szot, K., Speier, W. & Eberhardt, W. Microscopic nature of the metal to insulator phase transition induced through electroreduction in single-crystal KNbO3 . Appl. Phys. Lett. 60, 1190–1192 (1992).
Knauth, P. & Tuller, H. L. Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J. Appl. Phys. 85, 897–902 (1999).
Rhoderick, E. H. & Williams, R. H. Metal–Semiconductor Contacts, 2nd edn (Oxford Science Publications, Oxford 1988).
Weibel, A., Bouchet, R. & Knauth, P. Electrical properties and defect chemistry of anatase (TiO2). Solid State Ionics 177, 229–236 (2006).
Choi, B. J. et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005).
Chua, L. O. Memristor — missing circuit element. IEEE Trans. Circuit Theory CT-18, 507–519 (1971).
Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).
Ohdomari, I. & Tu, K. N. Parallel silicide contacts. J. Appl. Phys. 51, 3735–3739 (1980).
Tung, R. T. Electron transport at metal–semiconductor interfaces: General theory. Phys. Rev. B 45, 13509–13523 (1992).
Talin, A. A., Williams, R. S., Morgan, B. A., Ring, K. M. & Kavanagh, K. L. Nanometer-resolved spatial variations in the Schottky barrier height of a Au/n-type GaAs diode. Phys. Rev. B 49, 16474–16479 (1994).
Acknowledgements
The authors are grateful to HP colleagues W. Tong, J. Borghetti, Feng Miao and Zhiyong Li for valuable assistance with experiments, and D. Strukov and P. Kuekes for insightful discussions about the TiO2 switching mechanisms. This research was supported in part by Intelligence Advanced Research Projects Activity.
Author information
Authors and Affiliations
Contributions
J.Y. and D.S. conceived and designed the experiments. J.Y. performed the experiments. J.Y., M.P., D.S. and R.W. analysed the data. D.O. and X.L. contributed materials/analysis tools. J.Y., D.S. and R.W. co-wrote the paper.
Corresponding author
Supplementary information
Rights and permissions
About this article
Cite this article
Yang, J., Pickett, M., Li, X. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotech 3, 429–433 (2008). https://doi.org/10.1038/nnano.2008.160
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2008.160
This article is cited by
-
Computational evaluation of some optical and quantum electronics properties (performance) of an organic molecular switch
Optical and Quantum Electronics (2024)
-
Exploring thickness-dependent Cu/TiOx:Cu/Ti memristor and chaotic dynamics in a real fifth-order memristive circuit
Nonlinear Dynamics (2024)
-
Filament-free memristors for computing
Nano Convergence (2023)
-
Digital image processing realized by memristor-based technologies
Discover Nano (2023)
-
Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide
Nano Convergence (2023)