Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Subwavelength direct-write nanopatterning using optically trapped microspheres

Abstract

A number of non-lithographic techniques are now available for processing materials on the nanoscale, including optical techniques1,2,3,4,5,6,7 capable of producing features that are much smaller than the wavelength of light used. However, these techniques can be limited in speed, ease of use, cost of implementation, or the range of patterns they can write. Here we report how Bessel beam laser trapping of microspheres near surfaces can be used to enable near-field direct-write8,9 subwavelength nanopatterning. Using the microsphere as an objective lens to focus the processing laser, we demonstrate arbitrary patterns and individual features with minimum sizes of 100 nm (which is less than one-third the processing wavelength) and a positioning accuracy better than 40 nm in aqueous and chemical environments. Submicron spacing is maintained between the near-field objective and the substrate without active feedback control. If implemented with an array of optical traps, this approach could lead to a high-throughput probe-based method for patterning surfaces with subwavelength features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup and modelling.
Figure 2: Laser-written spot sizes.
Figure 3: Nanopatterning a logo.
Figure 4: AFM characterization of various spot morphologies.

Similar content being viewed by others

References

  1. Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    Article  CAS  Google Scholar 

  2. Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    Article  CAS  Google Scholar 

  3. Chimmalgi, A., Grigoropoulos, C. P. & Komvopoulos, K. Surface nanostructuring by nano-femtosectond laser-assisted scanning force microscopy. J. Appl. Phys. 97, 104319 (2005).

    Article  Google Scholar 

  4. Ohtsu, M., Kobayashi, K., Ito, H. & Lee, G.-H. Nanofabrication and atom manipulation by optical near-field and relevant quantum optical theory. Proc. IEEE 88, 1499–1519 (2000).

    Article  CAS  Google Scholar 

  5. Hwang, D. J., Chimmalgi, A. & Grigoropoulos, C. P. Ablation of thin metal films by short-pulsed lasers coupled through near-field scanning optical microscopy probes. J. Appl. Phys. 99, 044905 (2006).

    Article  Google Scholar 

  6. Betzig, E. & Trautman, J. K. Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257, 189–195 (1992).

    Article  CAS  Google Scholar 

  7. Piglmayer, K., Denk, R. & Bauerle, D. Laser-induced surface patterning by means of microspheres. Appl. Phys. Lett. 80, 4693–4695 (2002).

    Article  CAS  Google Scholar 

  8. Chrisey, D. B. Materials processing: the power of direct writing. Science 289, 879–881 (2000).

    Article  CAS  Google Scholar 

  9. Arnold, C. B., Serra, P. & Pique, A. Laser direct write of complex materials. MRS Bull. 32, 23–31 (2007).

    Article  CAS  Google Scholar 

  10. Munzer, H. J. et al. Local field enhancement effects for nanostructuring of surfaces. J. Microsc. 202, 129–135 (2001).

    Article  CAS  Google Scholar 

  11. McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Contemp. Phys. 46, 15–28 (2005).

    Article  Google Scholar 

  12. Garces-Chavez, V., McGloin, D., Melville, H., Sibbett, W. & Dholakia, K. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419, 145–147 (2002).

    Article  CAS  Google Scholar 

  13. Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, Harcourt Brace Jovanovich, London, 1985).

    Google Scholar 

  14. Walz, J. Y. & Prieve, D. C. Prediction and measurement of the optical trapping forces on a microscopic dielectric sphere. Langmuir 8, 3073–3082 (1992).

    Article  CAS  Google Scholar 

  15. Himmelbauer, M., Arenholz, E., Bauerle, D. & Schilcher, K. UV-laser-induced surface topology changes in polyimide. Appl. Phys. A 63, 337–339 (1996).

    Article  Google Scholar 

  16. Piglmayer, K., Arenholz, E., Ortwein, C., Arnold, N. & Bauerle, D. Single-pulse ultraviolet laser-induced surface modification and ablation of polyimide. Appl. Phys. Lett. 73, 847–849 (1998).

    Article  CAS  Google Scholar 

  17. Bauerle, D. Laser Processing and Chemistry (Springer, Berlin, 2000).

    Book  Google Scholar 

  18. Malyshev, A. Y. & Bityurin, N. M. Laser swelling model for polymers irradiated by nanosecond pulses. Quant. Electron. 35, 825–830 (2005).

    Article  CAS  Google Scholar 

  19. Lu, Q.-H., Li, M., Yin, J., Zhu, Z.-K. & Wang, Z.-G. Polyimide surface modification by pulsed ultraviolet laser irradiation with low fluence. J. Appl. Polym. Sci. 82, 2739–2743 (2001).

    Article  CAS  Google Scholar 

  20. Minsky, M. S., White, M. & Hu, E. L. Room-temperature photoenhanced wet etching of GaN. Appl. Phys. Lett. 68, 1531–1533 (1996).

    Article  CAS  Google Scholar 

  21. Cole, H. S., Liu, Y. Y., Rose, J. W. & Guida, R. Laser-induced selective copper deposition on polyimide. Appl. Phys. Lett. 53, 2111–2113 (1988).

    Article  CAS  Google Scholar 

  22. Chen, D., Lu, Q. & Zhao, Y. Laser-induced site-selective silver seeding on polyimide for electroless copper plating. Appl. Surf. Sci. 253, 1573–1580 (2006).

    Article  CAS  Google Scholar 

  23. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    Article  CAS  Google Scholar 

  24. Davis, J. A., Guertin, J. & Cottrell, D. M. Diffraction-free beams generated with programmable spatial light modulators. Appl. Opt. 32, 6368–6370 (1993).

    Article  CAS  Google Scholar 

  25. McLeod, E., Hopkins, A. B. & Arnold, C. B. Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. Opt. Lett. 31, 3155–3157 (2006).

    Article  Google Scholar 

  26. Tsai, T., McLeod, E. & Arnold, C. B. Generating Bessel beams with a tunable acoustic gradient index of refraction lens. Proc. SPIE 6326, 63261F (2006).

    Article  Google Scholar 

  27. Yee, K. S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antenn. Propag. AP-14, 302–307 (1966).

    Google Scholar 

  28. Mur, G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Trans. Electromagn. C EMC-23, 377–382 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Fleischer and M. Haataja for providing helpful insight and critiques, and N. Kattamis for providing helpful information regarding polyimide coating and thin film properties. Funding for this work was provided by Princeton University and Air Force Office of Scientific Research (AFOSR) (FA9550-08-1-0094).

Author information

Authors and Affiliations

Authors

Contributions

E.M. performed the experiments. E.M. and C.B.A. conceived and designed the experiments, analysed the data, and co-wrote the paper.

Corresponding author

Correspondence to Craig B. Arnold.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcleod, E., Arnold, C. Subwavelength direct-write nanopatterning using optically trapped microspheres. Nature Nanotech 3, 413–417 (2008). https://doi.org/10.1038/nnano.2008.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing