Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography


The practical realization of nanoscale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits1. In spite of the exceptional electronic properties of carbon nanotubes2, only basic demonstration devices have been realized that require time-consuming processes3,4,5. This is mainly due to a lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons and bent junctions with nanometre-precision, well-defined widths and predetermined crystallographic orientations, allowing us to fully engineer their electronic structure using scanning tunnelling microscope lithography. The atomic structure and electronic properties of the ribbons have been investigated by scanning tunnelling microscopy and tunnelling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, enabling room-temperature operation of graphene nanoribbon-based devices, is reported. This method avoids the difficulties of assembling nanoscale components and may prove useful in the realization of complete integrated circuits, operating as room-temperature ballistic electronic devices6,7.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene nanostructures patterned by STM lithography.
Figure 2: Atomic structure of GNRs.
Figure 3: Electronic structure of GNRs.
Figure 4: Tight-binding computation of the STM image of GNRs.
Figure 5: GNRs for room-temperature electronics.


  1. Avouris, P., Chen, Z. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

    Article  CAS  Google Scholar 

  2. Avouris, P. Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35, 1026–1034 (2002).

    Article  CAS  Google Scholar 

  3. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  4. Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 273–276 (1999).

    Article  CAS  Google Scholar 

  5. Keren, K., Berman, R. S., Buchstab, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003).

    Article  CAS  Google Scholar 

  6. Areshkin, D. A. & White, C. T. Building blocks for integrated graphene circuits. Nano Lett. 7, 3253–3259 (2007).

    Article  CAS  Google Scholar 

  7. Yan, Q. et al. Intrinsic current–voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett. 7, 1469–1473 (2007).

    Article  CAS  Google Scholar 

  8. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  9. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  10. Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article  CAS  Google Scholar 

  11. Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article  Google Scholar 

  12. Han, M. Y., Ozylmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  13. Chen, Z., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007).

    Article  CAS  Google Scholar 

  14. Tseng, A. A., Notargiacomo, A. & Chen, T. P. Nanofabrication by scanning probe microscope lithography: A review. J. Vac. Sci. Technol. B 23, 877–894 (2005).

    Article  CAS  Google Scholar 

  15. Albrecht, T. R. et al. Nanometer-scale hole formation on graphite using a scanning tunneling microscope. Appl. Phys. Lett. 55, 1727–1729 (1989).

    Article  CAS  Google Scholar 

  16. McCarley, R. L., Hendricks, S. A. & Bard, A. J. Controlled nanofabrication of highly oriented pyrolytic graphite with the scanning tunneling microscope. J. Phys. Chem. 96, 10089–10092 (1992).

    Article  CAS  Google Scholar 

  17. Mizes, H. A. & Foster, J. S. Long-range electronic perturbations caused by defects using scanning tunneling microscopy. Science 244, 559–562 (1989).

    Article  CAS  Google Scholar 

  18. Tapasztó, L. et al. Electron scattering in a multiwall carbon nanotube bend junction studied by scanning tunneling microscopy. Phys. Rev. B 74, 235422 (2006).

    Article  Google Scholar 

  19. Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2 . Nano Lett. 7, 1643–1648 (2007).

    Article  CAS  Google Scholar 

  20. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007).

    Article  CAS  Google Scholar 

  21. Gomez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett. 7, 3499–3503 (2007).

    Article  CAS  Google Scholar 

  22. Meunier, V. & Lamnin, P. Tight-binding computation of the STM image of carbon nanotubes. Phys. Rev. Lett. 81, 5588–5591 (1998).

    Article  CAS  Google Scholar 

  23. Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

  24. Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    Article  Google Scholar 

  25. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  CAS  Google Scholar 

  26. Miao, F. et al. Phase-coherent transport in graphene quantum billiards. Science 317, 1530–1533 (2007).

    Article  CAS  Google Scholar 

  27. Yoon, Y. & Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 73103 (2007).

    Article  Google Scholar 

  28. Knoll, A. et al. Integrating nanotechnology into a working storage device. Microelectron. Eng. 83, 1692–1697 (2006).

    Article  CAS  Google Scholar 

  29. Kim, D. H., Koo, J. Y. & Kim, J. J. Cutting of multiwalled carbon nanotubes by a negative voltage tip of an atomic force microscope: A possible mechanism. Phys. Rev. B 68, 113406 (2003).

    Article  Google Scholar 

Download references


This work was supported in Hungary by OTKA (Országos Tudományos Kutatási Alapprogramok) grant 67851 and OTKA-NKTH (Nemzeti Kutatási és Technológiai Hivatal) grant K67793.

Author information

Authors and Affiliations



L.T. conceived the experiments. L.T. and G.D. performed the experiments. L.T., P.L. and L.P.B. analysed the data. L.T. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Levente Tapasztó.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tapasztó, L., Dobrik, G., Lambin, P. et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech 3, 397–401 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research