Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress towards monodisperse single-walled carbon nanotubes

Abstract

The defining characteristic of a nanomaterial is that its properties vary as a function of its size. This size dependence can be clearly observed in single-walled carbon nanotubes, where changes in structure at the atomic scale can modify the electronic and optical properties of these materials in a discontinuous manner (for example, changing metallic nanotubes to semiconducting nanotubes and vice versa). However, as most practical technologies require predictable and uniform performance, researchers have been aggressively seeking strategies for preparing samples of single-walled carbon nanotubes with well-defined diameters, lengths, chiralities and electronic properties (that is, uniformly metallic or uniformly semiconducting). This review highlights post-synthetic approaches for sorting single-walled carbon nanotubes — including selective chemistry, electrical breakdown, dielectrophoresis, chromatography and ultracentrifugation — and progress towards selective growth of monodisperse samples.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical carbon nanotube structures.
Figure 2: Strategies for chemically functionalizing SWNTs.

© 2002 WILEY

Figure 3: Dielectrophoresis of SWNTs.

© 2003 AAAS

Figure 4: Chromatographic sorting of SWNTs.

© 2007 ACS

Figure 5: Sorting SWNTs using density gradient ultracentrifugation (DGU).

Similar content being viewed by others

References

  1. Thostenson, E. T., Ren, Z. F. & Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899–1912 (2001).

    CAS  Google Scholar 

  2. Mahar, B., Laslau, C., Yip, R. & Sun, Y. Development of carbon nanotube-based sensors - A review. IEEE Sens. J. 7, 266–284 (2007).

    CAS  Google Scholar 

  3. Kaushik, B. K., Goel, S. & Rauthan, G. Future VLSI interconnects: optical fiber or carbon nanotube - a review. Microelectron. Int. 24, 53–63 (2007).

    CAS  Google Scholar 

  4. Avouris, P., Chen, Z. H. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).

    CAS  Google Scholar 

  5. Charlier, J. C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    CAS  Google Scholar 

  6. Anantram, M. P. & Leonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69, 507–561 (2006).

    CAS  Google Scholar 

  7. Ebbesen, T. W. & Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992).

    CAS  Google Scholar 

  8. Guo, T., Nikolaev, P., Thess, A., Colbert, D. T. & Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995).

    CAS  Google Scholar 

  9. Endo, M. et al. The production and structure of pyrolytic carbon nanotubes. J. Phys. Chem. Solids 54, 1841–1848 (1993).

    CAS  Google Scholar 

  10. Krupke, R. & Hennrich, F. Separation techniques for carbon nanotubes. Adv. Engineer. Mat. 7, 111–116 (2005).

    CAS  Google Scholar 

  11. Banerjee, S., Hemraj-Benny, T. & Wong, S. S. Routes towards separating metallic and semiconducting nanotubes. J. Nanosci. Nanotechnol. 5, 841–855 (2005).

    CAS  Google Scholar 

  12. Haddon, R. C., Sippel, J., Rinzler, A. G. & Papadimitrakopoulos, F. Purification and separation of carbon nanotubes. Mater. Res. Bull. 29, 252–259 (2004).

    CAS  Google Scholar 

  13. Ivchenko, E. L. & Spivak, B. Chirality effects in carbon nanotubes. Phys. Rev. B 66, 155404 (2002).

    Google Scholar 

  14. Arnold, M. S. Carbon Nanotubes: Photophysics, Biofunctionalization, and Sorting via Density Differentiation. PhD Thesis, Northwestern Univ. (2006).

    Google Scholar 

  15. Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859 (2002).

    CAS  Google Scholar 

  16. Banerjee, S., Hemraj-Benny, T. & Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mat. 17, 17–29 (2005).

    CAS  Google Scholar 

  17. Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    CAS  Google Scholar 

  18. Campidelli, S., Meneghetti, M. & Prato, M. Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization. Small 3, 1672–1676 (2007).

    CAS  Google Scholar 

  19. Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).

    CAS  Google Scholar 

  20. Strano, M. S. Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. J. Am. Chem. Soc. 125, 16148–16153 (2003).

    CAS  Google Scholar 

  21. Kim, W. J., Usrey, M. L. & Strano, M. S. Selective functionalization and free solution electrophoresis of single-walled carbon nanotubes: Separate enrichment of metallic and semiconducting SWNT. Chem. Mater. 19, 1571–1576 (2007).

    CAS  Google Scholar 

  22. Toyoda, S. et al. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound. Chem. – Asian J. 2, 145–149 (2007).

    CAS  Google Scholar 

  23. An, L., Fu, Q. A., Lu, C. G. & Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 126, 10520–10521 (2004).

    CAS  Google Scholar 

  24. Balasubramanian, K., Sordan, R., Burghard, M. & Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 4, 827–830 (2004).

    CAS  Google Scholar 

  25. Kamaras, K., Itkis, M. E., Hu, H., Zhao, B. & Haddon, R. C. Covalent bond formation to a carbon nanotube metal. Science 301, 1501–1501 (2003).

    CAS  Google Scholar 

  26. Hu, H. et al. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J. Am. Chem. Soc. 125, 14893–14900 (2003).

    CAS  Google Scholar 

  27. An, K. H. et al. A diameter-selective attack of metallic carbon nanotubes by nitronium ions. J. Am. Chem. Soc. 127, 5196–5203 (2005).

    CAS  Google Scholar 

  28. Yang, C. M. et al. Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids. J. Phys. Chem. B 109, 19242–19248 (2005).

    CAS  Google Scholar 

  29. An, K. H. et al. A diameter-selective chiral separation of single-wall carbon nanotubes using nitronium ions. J. Electron. Mater. 35, 235–242 (2006).

    CAS  Google Scholar 

  30. Ramesh, S. et al. Diameter selection of single-walled carbon nanotubes through programmable solvation in binary sulfonic acid mixtures. J. Phys. Chem. C 111, 17827–17834 (2007).

    CAS  Google Scholar 

  31. Banerjee, S. & Wong, S. S. Demonstration of diameter-selective reactivity in the sidewall ozonation of SWNTs by resonance Raman spectroscopy. Nano Lett. 4, 1445–1450 (2004).

    CAS  Google Scholar 

  32. Banerjee, S. & Wong, S. S. Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 2073–2081 (2004).

    CAS  Google Scholar 

  33. Yudasaka, M., Zhang, M. & Iijima, S. Diameter-selective removal of single-wall carbon nanotubes through light-assisted oxidation. Chem. Phys. Lett. 374, 132–136 (2003).

    CAS  Google Scholar 

  34. Miyata, Y., Maniwa, Y. & Kataura, H. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. J. Phys. Chem. B 110, 25–29 (2006).

    CAS  Google Scholar 

  35. Lu, J. et al. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts. Small 3, 1566–1576 (2007).

    CAS  Google Scholar 

  36. Menard-Moyon, C., Izard, N., Doris, E. & Mioskowski, C. Separation of semiconducting from metallic carbon nanotubes by selective functionalization with azomethine ylides. J. Am. Chem. Soc. 128, 6552–6553 (2006).

    CAS  Google Scholar 

  37. Maeda, Y. et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 10287–10290 (2005).

    CAS  Google Scholar 

  38. Maeda, Y. et al. Dispersion and separation of small-diameter single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 12239–12242 (2006).

    CAS  Google Scholar 

  39. Chattopadhyay, D., Galeska, L. & Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 125, 3370–3375 (2003).

    CAS  Google Scholar 

  40. Samsonidze, G. G. et al. Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. Appl. Phys. Lett. 85, 1006–1008 (2004).

    CAS  Google Scholar 

  41. Kim, S. N., Luo, Z. T. & Papadimitrakopoulos, F. Diameter and metallicity dependent redox influences on the separation of single-wall carbon nanotubes. Nano Lett. 5, 2500–2504 (2005).

    CAS  Google Scholar 

  42. Chen, Z. H. et al. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano Lett. 3, 1245–1249 (2003).

    CAS  Google Scholar 

  43. Park, N. et al. Band gap sensitivity of bromine adsorption at carbon nanotubes. Chem. Phys. Lett. 403, 135–139 (2005).

    CAS  Google Scholar 

  44. Lu, J. et al. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: Critical role of the molecular size and orientation. J. Am. Chem. Soc. 128, 5114–5118 (2006).

    CAS  Google Scholar 

  45. McDonald, T. J., Engtrakul, C., Jones, M., Rumbles, G. & Heben, M. J. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions. J. Phys. Chem. B 110, 25339–25346 (2006).

    CAS  Google Scholar 

  46. McDonald, T. J., Blackburn, J. L., Metzger, W. K., Rumbles, G. & Heben, M. J. Chiral-selective protection of single-walled carbon nanotube photoluminescence by surfactant selection. J. Phys. Chem. C 111, 17894–17900 (2007).

    CAS  Google Scholar 

  47. Li, H. P. et al. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 1014–1015 (2004).

    CAS  Google Scholar 

  48. Peng, X. et al. Optically active single-walled carbon nanotubes. Nature Nanotech. 2, 361–365 (2007).

    CAS  Google Scholar 

  49. Peng, X., Komatsu, N., Kimura, T. & Osuka, A. Improved optical enrichment of SWNTs through extraction with chiral nanotweezers of 2,6-pyridylene-bridged diporphyrins. J. Am. Chem. Soc. 129, 15947–15953 (2007).

    CAS  Google Scholar 

  50. Chen, F. M., Wang, B., Chen, Y. & Li, L. J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 7, 3013–3017 (2007).

    CAS  Google Scholar 

  51. Nish, A., Hwang, J. Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single walled carbon nanotubes using aromatic polymers. Nature Nanotech. 2, 640–646 (2007).

    CAS  Google Scholar 

  52. Hwang, J. Y. et al. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. J. Am. Chem. Soc. 130, 3543–3553 (2008).

    CAS  Google Scholar 

  53. Fantini, C., Jorio, A., Santos, A. P., Peressinotto, V. S. T. & Pimenta, M. A. Characterization of DNA-wrapped carbon nanotubes by resonance Raman and optical absorption spectroscopies. Chem. Phys. Lett. 439, 138–142 (2007).

    CAS  Google Scholar 

  54. Shin, H.-J. et al. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and –withdrawing groups. J. Am. Chem. Soc. 130, 2062–2066 (2008).

    CAS  Google Scholar 

  55. Tromp, R. M., Afzali, A., Freitag, M., Mitzi, D. B. & Chen, Z. Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes. Nano Lett. 8, 469–472 (2008).

    CAS  Google Scholar 

  56. Nagasawa, S., Yudasaka, M., Hirahara, K., Ichihashi, T. & Iijima, S. Effect of oxidation on single-wall carbon nanotubes. Chem. Phys. Lett. 328, 374–380 (2000).

    CAS  Google Scholar 

  57. Miyata, Y. et al. Chirality-dependent combustion of single-walled carbon nanotubes. J. Phys. Chem. C 111, 9671–9677 (2007).

    CAS  Google Scholar 

  58. Yang, C. M. et al. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 73, 075419 (2006).

    Google Scholar 

  59. Zhang, G. Y. et al. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314, 974–977 (2006).

    CAS  Google Scholar 

  60. Collins, P. C., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    CAS  Google Scholar 

  61. Collins, P. G., Hersam, M., Arnold, M., Martel, R. & Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86, 3128–3131 (2001).

    CAS  Google Scholar 

  62. Huang, H. J., Maruyama, R., Noda, K., Kajiura, H. & Kadono, K. Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. J. Phys. Chem. B 110, 7316–7320 (2006).

    CAS  Google Scholar 

  63. Zhang, Y., Zhang, Y., Xian, X., Zhang, J. & Liu, Z. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 112, 3849–3856 (2008).

    CAS  Google Scholar 

  64. Heller, D. A. et al. Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).

    CAS  Google Scholar 

  65. Vetcher, A. A. et al. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis. Nanotechnology 17, 4263–4269 (2006).

    CAS  Google Scholar 

  66. Doorn, S. K. et al. High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc. 124, 3169–3174 (2002).

    CAS  Google Scholar 

  67. Doorn, S. K. et al. Capillary electrophoresis separations of bundled and individual carbon nanotubes. J. Phys. Chem. B 107, 6063–6069 (2003).

    CAS  Google Scholar 

  68. Krupke, R., Hennrich, F., von Lohneysen, H. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).

    CAS  Google Scholar 

  69. Krupke, R., Hennrich, F., Kappes, M. M. & Lohneysen, H. V. Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395–1399 (2004).

    CAS  Google Scholar 

  70. Krupke, R., Linden, S., Rapp, M. & Hennrich, F. Thin films of metallic carbon nanotubes prepared by dielectrophoresis. Adv. Mater. 18, 1468–1470 (2006).

    CAS  Google Scholar 

  71. Hong, S., Jung, S., Choi, J., Kim, Y. & Baik, S. Electrical transport characteristics of surface-conductance-controlled, dielectrophoretically separated single-walled carbon nanotubes. Langmuir 23, 4749–4752 (2007).

    CAS  Google Scholar 

  72. Lutz, T. & Donovan, K. J. Macroscopic scale separation of metallic and semiconducting nanotubes by dielectrophoresis. Carbon 43, 2508–2513 (2005).

    CAS  Google Scholar 

  73. Peng, H. Q., Alvarez, N. T., Kittrell, C., Hauge, R. H. & Schmidt, H. K. Dielectrophoresis field flow fractionation of single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 8396–8397 (2006).

    CAS  Google Scholar 

  74. Liu, J. et al. Fullerene pipes. Science 280, 1253–1256 (1998).

    CAS  Google Scholar 

  75. Chen, B. L. & Selegue, J. P. Separation and characterization of single-walled and multiwalled carbon nanotubes by using flow field-flow fractionation. Anal. Chem. 74, 4774–4780 (2002).

    CAS  Google Scholar 

  76. Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).

    CAS  Google Scholar 

  77. Strano, M. S. et al. Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett. 4, 543–550 (2004).

    CAS  Google Scholar 

  78. Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).

    CAS  Google Scholar 

  79. Lustig, S. R., Jagota, A., Khripin, C. & Zheng, M. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J. Phys. Chem. B 109, 2559–2566 (2005).

    CAS  Google Scholar 

  80. Duesberg, G. S., Muster, J., Krstic, V., Burghard, M. & Roth, S. Chromatographic size separation of single-wall carbon nanotubes. Appl. Phys. A 67, 117–119 (1998).

    CAS  Google Scholar 

  81. Farkas, E., Anderson, M. E., Chen, Z. H. & Rinzler, A. G. Length sorting cut single wall carbon nanotubes by high performance liquid chromatography. Chem. Phys. Lett. 363, 111–116 (2002).

    CAS  Google Scholar 

  82. Huang, X. Y., McLean, R. S. & Zheng, M. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77, 6225–6228 (2005).

    CAS  Google Scholar 

  83. Arnold, K., Hennrich, F., Krupke, R., Lebedkin, S. & Kappes, M. M. Length separation studies of single walled carbon nanotube dispersions. Phys. Status Solidi B 243, 3073–3076 (2006).

    CAS  Google Scholar 

  84. Bauer, B. J., Fagan, J. A., Hobbie, E. K., Chun, J. & Bajpai, V. Chromatographic fractionation of SWNT/DNA dispersions with on-line multi-angle light scattering. J. Phys. Chem. C 112, 1842–1850 (2008).

    CAS  Google Scholar 

  85. Chattopadhyay, D., Lastella, S., Kim, S. & Papadimitrakopoulos, F. Length separation of Zwitterion-functionalized single wall carbon nanotubes by GPC. J. Am. Chem. Soc. 124, 728–729 (2002).

    CAS  Google Scholar 

  86. Zheng, M. & Semke, E. D. Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 129, 6084–6085 (2007).

    CAS  Google Scholar 

  87. Zhang, L. et al. Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 130, 2686–2691 (2008).

    CAS  Google Scholar 

  88. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).

    CAS  Google Scholar 

  89. Wei, L. et al. Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n,m) distribution samples. J. Phys. Chem. B 112, 2771–2774 (2008).

    CAS  Google Scholar 

  90. Green, A. A. & Hersam, M. C. Ultracentrifugation of single-walled nanotubes. Mater. Today 10, 59–60 (December 2007).

    CAS  Google Scholar 

  91. Nair, N., Kim, W.-J., Braatz, R. D. & Strano, M. S. Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. Langmuir 24, 1790–1795 (2008).

    CAS  Google Scholar 

  92. Arnold, M. S., Stupp, S. I. & Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5, 713–718 (2005).

    CAS  Google Scholar 

  93. Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).

    CAS  Google Scholar 

  94. Zhu, Z. P. et al. Pump-probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes. J. Phys. Chem. C 111, 3831–3835 (2007).

    CAS  Google Scholar 

  95. Qian, H. et al. Exciton energy transfer in pairs of single-walled carbon nanotubes. Nano Lett. 8, 1363–1367 (2008).

    CAS  Google Scholar 

  96. Crochet, J., Clemens, M. & Hertel, T. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007).

    CAS  Google Scholar 

  97. Hennrich, F. et al. Diameter sorting of carbon nanotubes by gradient centrifugation: Role of endohedral water. Phys. Status Solidi B 244, 3896–3900 (2007).

    CAS  Google Scholar 

  98. Green, A. A. & Hersam, M. C. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett. 8, 1417–1422 (2008).

    CAS  Google Scholar 

  99. Yanagi, K., Miyata, Y. & Kataura, H. Optical and conductive characteristics of metallic single-wall carbon nanotubes with three basic colors: Cyan, magenta, and yellow. Appl. Phys. Express 1, 034003 (2008).

    Google Scholar 

  100. Miyata, Y., Yanagi, K., Maniwa, Y. & Kataura, H. Highly stabilized conductivity of metallic single wall carbon nanotube thin films. J. Phys. Chem. C 112, 3591–3596 (2008).

    CAS  Google Scholar 

  101. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    CAS  Google Scholar 

  102. Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).

    CAS  Google Scholar 

  103. Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).

    CAS  Google Scholar 

  104. Cassell, A. M., Raymakers, J. A., Kong, J. & Dai, H. J. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 6484–6492 (1999).

    CAS  Google Scholar 

  105. Huang, S. M., Cai, X. Y. & Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125, 5636–5637 (2003).

    CAS  Google Scholar 

  106. Bandow, S. et al. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779–3782 (1998).

    CAS  Google Scholar 

  107. Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).

    CAS  Google Scholar 

  108. Hiraoka, T., Bandow, S., Shinohara, H. & Iijima, S. Control on the diameter of single-walled carbon nanotubes by changing the pressure in floating catalyst CVD. Carbon 44, 1853–1859 (2006).

    CAS  Google Scholar 

  109. Wang, B. et al. Pressure-induced single-walled carbon nanotube (n,m) selectivity on Co-Mo catalysts. J. Phys. Chem. C 111, 14612–14616 (2007).

    CAS  Google Scholar 

  110. Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S. & Kohno, M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229–234 (2002).

    CAS  Google Scholar 

  111. Wang, B. et al. (n,m) selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts. J. Am. Chem. Soc. 129, 9014–9019 (2007).

    CAS  Google Scholar 

  112. Sinnott, S. B. et al. Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 315, 25–30 (1999).

    CAS  Google Scholar 

  113. Kitiyanan, B., Alvarez, W. E., Harwell, J. H. & Resasco, D. E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett. 317, 497–503 (2000).

    CAS  Google Scholar 

  114. Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).

    CAS  Google Scholar 

  115. Li, X. L. et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 129, 15770–15771 (2007).

    CAS  Google Scholar 

  116. Li, Y. M. et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4, 317–321 (2004).

    CAS  Google Scholar 

  117. Wang, Y. et al. Direct enrichment of metallic single-waited carbon nanotubes induced by the different molecular composition of monohydroxy alcohol homologues. Small 3, 1486–1490 (2007).

    CAS  Google Scholar 

  118. Wang, Y. H. et al. Continued growth of single-walled carbon nanotubes. Nano Lett. 5, 997–1002 (2005).

    CAS  Google Scholar 

  119. Smalley, R. E. et al. Single wall carbon nanotube amplification: En route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824–15829 (2006).

    CAS  Google Scholar 

  120. Ogrin, D. et al. Amplification of single-walled carbon nanotubes from designed seeds: Separation of nucleation and growth. J. Phys. Chem. C 111, 17804–17806 (2007).

    CAS  Google Scholar 

  121. Iwasaki, T., Robertson, J. & Kawarada, H. Mechanism analysis of interrupted growth of single-walled carbon nanotube arrays. Nano Lett. 8, 886–890 (2008).

    CAS  Google Scholar 

  122. Yan, Y. H., Chan-Park, M. B. & Zhang, Q. Advances in carbon-nanotube assembly. Small 3, 24–42 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Army Telemedicine and Advanced Technology Research Center (DAMD17-05-1-0381), the National Science Foundation (DMR-0520513, EEC-0647560, and DMR-0706067), and the Department of Energy (DE-FG02-03ER15457). An Alfred P. Sloan Research Fellowship is also acknowledged. M.C.H. also thanks M. S. Arnold and A. A. Green for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hersam, M. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech 3, 387–394 (2008). https://doi.org/10.1038/nnano.2008.135

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.135

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing