Abstract
The defining characteristic of a nanomaterial is that its properties vary as a function of its size. This size dependence can be clearly observed in single-walled carbon nanotubes, where changes in structure at the atomic scale can modify the electronic and optical properties of these materials in a discontinuous manner (for example, changing metallic nanotubes to semiconducting nanotubes and vice versa). However, as most practical technologies require predictable and uniform performance, researchers have been aggressively seeking strategies for preparing samples of single-walled carbon nanotubes with well-defined diameters, lengths, chiralities and electronic properties (that is, uniformly metallic or uniformly semiconducting). This review highlights post-synthetic approaches for sorting single-walled carbon nanotubes — including selective chemistry, electrical breakdown, dielectrophoresis, chromatography and ultracentrifugation — and progress towards selective growth of monodisperse samples.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Thostenson, E. T., Ren, Z. F. & Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 61, 1899–1912 (2001).
Mahar, B., Laslau, C., Yip, R. & Sun, Y. Development of carbon nanotube-based sensors - A review. IEEE Sens. J. 7, 266–284 (2007).
Kaushik, B. K., Goel, S. & Rauthan, G. Future VLSI interconnects: optical fiber or carbon nanotube - a review. Microelectron. Int. 24, 53–63 (2007).
Avouris, P., Chen, Z. H. & Perebeinos, V. Carbon-based electronics. Nature Nanotech. 2, 605–615 (2007).
Charlier, J. C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).
Anantram, M. P. & Leonard, F. Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69, 507–561 (2006).
Ebbesen, T. W. & Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 358, 220–222 (1992).
Guo, T., Nikolaev, P., Thess, A., Colbert, D. T. & Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995).
Endo, M. et al. The production and structure of pyrolytic carbon nanotubes. J. Phys. Chem. Solids 54, 1841–1848 (1993).
Krupke, R. & Hennrich, F. Separation techniques for carbon nanotubes. Adv. Engineer. Mat. 7, 111–116 (2005).
Banerjee, S., Hemraj-Benny, T. & Wong, S. S. Routes towards separating metallic and semiconducting nanotubes. J. Nanosci. Nanotechnol. 5, 841–855 (2005).
Haddon, R. C., Sippel, J., Rinzler, A. G. & Papadimitrakopoulos, F. Purification and separation of carbon nanotubes. Mater. Res. Bull. 29, 252–259 (2004).
Ivchenko, E. L. & Spivak, B. Chirality effects in carbon nanotubes. Phys. Rev. B 66, 155404 (2002).
Arnold, M. S. Carbon Nanotubes: Photophysics, Biofunctionalization, and Sorting via Density Differentiation. PhD Thesis, Northwestern Univ. (2006).
Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859 (2002).
Banerjee, S., Hemraj-Benny, T. & Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mat. 17, 17–29 (2005).
Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).
Campidelli, S., Meneghetti, M. & Prato, M. Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization. Small 3, 1672–1676 (2007).
Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003).
Strano, M. S. Probing chiral selective reactions using a revised Kataura plot for the interpretation of single-walled carbon nanotube spectroscopy. J. Am. Chem. Soc. 125, 16148–16153 (2003).
Kim, W. J., Usrey, M. L. & Strano, M. S. Selective functionalization and free solution electrophoresis of single-walled carbon nanotubes: Separate enrichment of metallic and semiconducting SWNT. Chem. Mater. 19, 1571–1576 (2007).
Toyoda, S. et al. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound. Chem. – Asian J. 2, 145–149 (2007).
An, L., Fu, Q. A., Lu, C. G. & Liu, J. A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices. J. Am. Chem. Soc. 126, 10520–10521 (2004).
Balasubramanian, K., Sordan, R., Burghard, M. & Kern, K. A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 4, 827–830 (2004).
Kamaras, K., Itkis, M. E., Hu, H., Zhao, B. & Haddon, R. C. Covalent bond formation to a carbon nanotube metal. Science 301, 1501–1501 (2003).
Hu, H. et al. Sidewall functionalization of single-walled carbon nanotubes by addition of dichlorocarbene. J. Am. Chem. Soc. 125, 14893–14900 (2003).
An, K. H. et al. A diameter-selective attack of metallic carbon nanotubes by nitronium ions. J. Am. Chem. Soc. 127, 5196–5203 (2005).
Yang, C. M. et al. Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids. J. Phys. Chem. B 109, 19242–19248 (2005).
An, K. H. et al. A diameter-selective chiral separation of single-wall carbon nanotubes using nitronium ions. J. Electron. Mater. 35, 235–242 (2006).
Ramesh, S. et al. Diameter selection of single-walled carbon nanotubes through programmable solvation in binary sulfonic acid mixtures. J. Phys. Chem. C 111, 17827–17834 (2007).
Banerjee, S. & Wong, S. S. Demonstration of diameter-selective reactivity in the sidewall ozonation of SWNTs by resonance Raman spectroscopy. Nano Lett. 4, 1445–1450 (2004).
Banerjee, S. & Wong, S. S. Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 2073–2081 (2004).
Yudasaka, M., Zhang, M. & Iijima, S. Diameter-selective removal of single-wall carbon nanotubes through light-assisted oxidation. Chem. Phys. Lett. 374, 132–136 (2003).
Miyata, Y., Maniwa, Y. & Kataura, H. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. J. Phys. Chem. B 110, 25–29 (2006).
Lu, J. et al. Why semiconducting single-walled carbon nanotubes are separated from their metallic counterparts. Small 3, 1566–1576 (2007).
Menard-Moyon, C., Izard, N., Doris, E. & Mioskowski, C. Separation of semiconducting from metallic carbon nanotubes by selective functionalization with azomethine ylides. J. Am. Chem. Soc. 128, 6552–6553 (2006).
Maeda, Y. et al. Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 10287–10290 (2005).
Maeda, Y. et al. Dispersion and separation of small-diameter single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 12239–12242 (2006).
Chattopadhyay, D., Galeska, L. & Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 125, 3370–3375 (2003).
Samsonidze, G. G. et al. Quantitative evaluation of the octadecylamine-assisted bulk separation of semiconducting and metallic single-wall carbon nanotubes by resonance Raman spectroscopy. Appl. Phys. Lett. 85, 1006–1008 (2004).
Kim, S. N., Luo, Z. T. & Papadimitrakopoulos, F. Diameter and metallicity dependent redox influences on the separation of single-wall carbon nanotubes. Nano Lett. 5, 2500–2504 (2005).
Chen, Z. H. et al. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano Lett. 3, 1245–1249 (2003).
Park, N. et al. Band gap sensitivity of bromine adsorption at carbon nanotubes. Chem. Phys. Lett. 403, 135–139 (2005).
Lu, J. et al. Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: Critical role of the molecular size and orientation. J. Am. Chem. Soc. 128, 5114–5118 (2006).
McDonald, T. J., Engtrakul, C., Jones, M., Rumbles, G. & Heben, M. J. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions. J. Phys. Chem. B 110, 25339–25346 (2006).
McDonald, T. J., Blackburn, J. L., Metzger, W. K., Rumbles, G. & Heben, M. J. Chiral-selective protection of single-walled carbon nanotube photoluminescence by surfactant selection. J. Phys. Chem. C 111, 17894–17900 (2007).
Li, H. P. et al. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 1014–1015 (2004).
Peng, X. et al. Optically active single-walled carbon nanotubes. Nature Nanotech. 2, 361–365 (2007).
Peng, X., Komatsu, N., Kimura, T. & Osuka, A. Improved optical enrichment of SWNTs through extraction with chiral nanotweezers of 2,6-pyridylene-bridged diporphyrins. J. Am. Chem. Soc. 129, 15947–15953 (2007).
Chen, F. M., Wang, B., Chen, Y. & Li, L. J. Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 7, 3013–3017 (2007).
Nish, A., Hwang, J. Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single walled carbon nanotubes using aromatic polymers. Nature Nanotech. 2, 640–646 (2007).
Hwang, J. Y. et al. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. J. Am. Chem. Soc. 130, 3543–3553 (2008).
Fantini, C., Jorio, A., Santos, A. P., Peressinotto, V. S. T. & Pimenta, M. A. Characterization of DNA-wrapped carbon nanotubes by resonance Raman and optical absorption spectroscopies. Chem. Phys. Lett. 439, 138–142 (2007).
Shin, H.-J. et al. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and –withdrawing groups. J. Am. Chem. Soc. 130, 2062–2066 (2008).
Tromp, R. M., Afzali, A., Freitag, M., Mitzi, D. B. & Chen, Z. Novel strategy for diameter-selective separation and functionalization of single-wall carbon nanotubes. Nano Lett. 8, 469–472 (2008).
Nagasawa, S., Yudasaka, M., Hirahara, K., Ichihashi, T. & Iijima, S. Effect of oxidation on single-wall carbon nanotubes. Chem. Phys. Lett. 328, 374–380 (2000).
Miyata, Y. et al. Chirality-dependent combustion of single-walled carbon nanotubes. J. Phys. Chem. C 111, 9671–9677 (2007).
Yang, C. M. et al. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 73, 075419 (2006).
Zhang, G. Y. et al. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314, 974–977 (2006).
Collins, P. C., Arnold, M. S. & Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).
Collins, P. G., Hersam, M., Arnold, M., Martel, R. & Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86, 3128–3131 (2001).
Huang, H. J., Maruyama, R., Noda, K., Kajiura, H. & Kadono, K. Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. J. Phys. Chem. B 110, 7316–7320 (2006).
Zhang, Y., Zhang, Y., Xian, X., Zhang, J. & Liu, Z. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using xenon-lamp irradiation. J. Phys. Chem. C 112, 3849–3856 (2008).
Heller, D. A. et al. Concomitant length and diameter separation of single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 14567–14573 (2004).
Vetcher, A. A. et al. Fractionation of SWNT/nucleic acid complexes by agarose gel electrophoresis. Nanotechnology 17, 4263–4269 (2006).
Doorn, S. K. et al. High resolution capillary electrophoresis of carbon nanotubes. J. Am. Chem. Soc. 124, 3169–3174 (2002).
Doorn, S. K. et al. Capillary electrophoresis separations of bundled and individual carbon nanotubes. J. Phys. Chem. B 107, 6063–6069 (2003).
Krupke, R., Hennrich, F., von Lohneysen, H. & Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344–347 (2003).
Krupke, R., Hennrich, F., Kappes, M. M. & Lohneysen, H. V. Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395–1399 (2004).
Krupke, R., Linden, S., Rapp, M. & Hennrich, F. Thin films of metallic carbon nanotubes prepared by dielectrophoresis. Adv. Mater. 18, 1468–1470 (2006).
Hong, S., Jung, S., Choi, J., Kim, Y. & Baik, S. Electrical transport characteristics of surface-conductance-controlled, dielectrophoretically separated single-walled carbon nanotubes. Langmuir 23, 4749–4752 (2007).
Lutz, T. & Donovan, K. J. Macroscopic scale separation of metallic and semiconducting nanotubes by dielectrophoresis. Carbon 43, 2508–2513 (2005).
Peng, H. Q., Alvarez, N. T., Kittrell, C., Hauge, R. H. & Schmidt, H. K. Dielectrophoresis field flow fractionation of single-walled carbon nanotubes. J. Am. Chem. Soc. 128, 8396–8397 (2006).
Liu, J. et al. Fullerene pipes. Science 280, 1253–1256 (1998).
Chen, B. L. & Selegue, J. P. Separation and characterization of single-walled and multiwalled carbon nanotubes by using flow field-flow fractionation. Anal. Chem. 74, 4774–4780 (2002).
Zheng, M. et al. DNA-assisted dispersion and separation of carbon nanotubes. Nature Mater. 2, 338–342 (2003).
Strano, M. S. et al. Understanding the nature of the DNA-assisted separation of single-walled carbon nanotubes using fluorescence and Raman spectroscopy. Nano Lett. 4, 543–550 (2004).
Zheng, M. et al. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 302, 1545–1548 (2003).
Lustig, S. R., Jagota, A., Khripin, C. & Zheng, M. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J. Phys. Chem. B 109, 2559–2566 (2005).
Duesberg, G. S., Muster, J., Krstic, V., Burghard, M. & Roth, S. Chromatographic size separation of single-wall carbon nanotubes. Appl. Phys. A 67, 117–119 (1998).
Farkas, E., Anderson, M. E., Chen, Z. H. & Rinzler, A. G. Length sorting cut single wall carbon nanotubes by high performance liquid chromatography. Chem. Phys. Lett. 363, 111–116 (2002).
Huang, X. Y., McLean, R. S. & Zheng, M. High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77, 6225–6228 (2005).
Arnold, K., Hennrich, F., Krupke, R., Lebedkin, S. & Kappes, M. M. Length separation studies of single walled carbon nanotube dispersions. Phys. Status Solidi B 243, 3073–3076 (2006).
Bauer, B. J., Fagan, J. A., Hobbie, E. K., Chun, J. & Bajpai, V. Chromatographic fractionation of SWNT/DNA dispersions with on-line multi-angle light scattering. J. Phys. Chem. C 112, 1842–1850 (2008).
Chattopadhyay, D., Lastella, S., Kim, S. & Papadimitrakopoulos, F. Length separation of Zwitterion-functionalized single wall carbon nanotubes by GPC. J. Am. Chem. Soc. 124, 728–729 (2002).
Zheng, M. & Semke, E. D. Enrichment of single chirality carbon nanotubes. J. Am. Chem. Soc. 129, 6084–6085 (2007).
Zhang, L. et al. Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc. 130, 2686–2691 (2008).
O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002).
Wei, L. et al. Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n,m) distribution samples. J. Phys. Chem. B 112, 2771–2774 (2008).
Green, A. A. & Hersam, M. C. Ultracentrifugation of single-walled nanotubes. Mater. Today 10, 59–60 (December 2007).
Nair, N., Kim, W.-J., Braatz, R. D. & Strano, M. S. Dynamics of surfactant-suspended single-walled carbon nanotubes in a centrifugal field. Langmuir 24, 1790–1795 (2008).
Arnold, M. S., Stupp, S. I. & Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 5, 713–718 (2005).
Arnold, M. S., Green, A. A., Hulvat, J. F., Stupp, S. I. & Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 1, 60–65 (2006).
Zhu, Z. P. et al. Pump-probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes. J. Phys. Chem. C 111, 3831–3835 (2007).
Qian, H. et al. Exciton energy transfer in pairs of single-walled carbon nanotubes. Nano Lett. 8, 1363–1367 (2008).
Crochet, J., Clemens, M. & Hertel, T. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129, 8058–8059 (2007).
Hennrich, F. et al. Diameter sorting of carbon nanotubes by gradient centrifugation: Role of endohedral water. Phys. Status Solidi B 244, 3896–3900 (2007).
Green, A. A. & Hersam, M. C. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett. 8, 1417–1422 (2008).
Yanagi, K., Miyata, Y. & Kataura, H. Optical and conductive characteristics of metallic single-wall carbon nanotubes with three basic colors: Cyan, magenta, and yellow. Appl. Phys. Express 1, 034003 (2008).
Miyata, Y., Yanagi, K., Maniwa, Y. & Kataura, H. Highly stabilized conductivity of metallic single wall carbon nanotube thin films. J. Phys. Chem. C 112, 3591–3596 (2008).
Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. J. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).
Kang, S. J. et al. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2, 230–236 (2007).
Hata, K. et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306, 1362–1364 (2004).
Cassell, A. M., Raymakers, J. A., Kong, J. & Dai, H. J. Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 6484–6492 (1999).
Huang, S. M., Cai, X. Y. & Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 125, 5636–5637 (2003).
Bandow, S. et al. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes. Phys. Rev. Lett. 80, 3779–3782 (1998).
Nikolaev, P. et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).
Hiraoka, T., Bandow, S., Shinohara, H. & Iijima, S. Control on the diameter of single-walled carbon nanotubes by changing the pressure in floating catalyst CVD. Carbon 44, 1853–1859 (2006).
Wang, B. et al. Pressure-induced single-walled carbon nanotube (n,m) selectivity on Co-Mo catalysts. J. Phys. Chem. C 111, 14612–14616 (2007).
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S. & Kohno, M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol. Chem. Phys. Lett. 360, 229–234 (2002).
Wang, B. et al. (n,m) selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts. J. Am. Chem. Soc. 129, 9014–9019 (2007).
Sinnott, S. B. et al. Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 315, 25–30 (1999).
Kitiyanan, B., Alvarez, W. E., Harwell, J. H. & Resasco, D. E. Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett. 317, 497–503 (2000).
Bachilo, S. M. et al. Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J. Am. Chem. Soc. 125, 11186–11187 (2003).
Li, X. L. et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 129, 15770–15771 (2007).
Li, Y. M. et al. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 4, 317–321 (2004).
Wang, Y. et al. Direct enrichment of metallic single-waited carbon nanotubes induced by the different molecular composition of monohydroxy alcohol homologues. Small 3, 1486–1490 (2007).
Wang, Y. H. et al. Continued growth of single-walled carbon nanotubes. Nano Lett. 5, 997–1002 (2005).
Smalley, R. E. et al. Single wall carbon nanotube amplification: En route to a type-specific growth mechanism. J. Am. Chem. Soc. 128, 15824–15829 (2006).
Ogrin, D. et al. Amplification of single-walled carbon nanotubes from designed seeds: Separation of nucleation and growth. J. Phys. Chem. C 111, 17804–17806 (2007).
Iwasaki, T., Robertson, J. & Kawarada, H. Mechanism analysis of interrupted growth of single-walled carbon nanotube arrays. Nano Lett. 8, 886–890 (2008).
Yan, Y. H., Chan-Park, M. B. & Zhang, Q. Advances in carbon-nanotube assembly. Small 3, 24–42 (2007).
Acknowledgements
This work was supported by the US Army Telemedicine and Advanced Technology Research Center (DAMD17-05-1-0381), the National Science Foundation (DMR-0520513, EEC-0647560, and DMR-0706067), and the Department of Energy (DE-FG02-03ER15457). An Alfred P. Sloan Research Fellowship is also acknowledged. M.C.H. also thanks M. S. Arnold and A. A. Green for helpful discussions.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hersam, M. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech 3, 387–394 (2008). https://doi.org/10.1038/nnano.2008.135
Published:
Issue Date:
DOI: https://doi.org/10.1038/nnano.2008.135
This article is cited by
-
Dual-modes electromagnetically induced transparency based on carbon nanotube films terahertz metasurface
Optical and Quantum Electronics (2023)
-
Bulk growth and separation of single-walled carbon nanotubes from rhenium catalyst
Nano Research (2022)
-
Printed thin film transistors with 108 on/off ratios and photoelectrical synergistic characteristics using isoindigo-based polymers-enriched (9,8) carbon nanotubes
Nano Research (2022)
-
Investigation of shear forces in twisted carbon nanotube bundles using a structural mechanics approach
Acta Mechanica (2021)
-
A review on conducting carbon nanotube fibers spun via direct spinning technique
Journal of Materials Science (2021)