Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator

Abstract

Sensors based on nanoelectromechanical systems vibrating at high and ultrahigh frequencies1 are capable of levels of performance that surpass those of larger sensors. Nanoelectromechanical devices have achieved unprecedented sensitivity in the detection of displacement2, mass3, force4 and charge5. To date, these milestones have been achieved with passive devices that require external periodic or impulsive stimuli to excite them into resonance. Here, we demonstrate an autonomous and self-sustaining nanoelectromechanical oscillator that generates continuous ultrahigh-frequency signals when powered by a steady d.c. source. The frequency-determining element in the oscillator is a 428 MHz nanoelectromechanical resonator that is embedded within a tunable electrical feedback network to generate active and stable self-oscillation. Our prototype nanoelectromechanical oscillator exhibits excellent frequency stability, linewidth narrowing and low phase noise performance. Such ultrahigh-frequency oscillators provide a comparatively simple means for implementing a wide variety of practical sensing applications. They also offer intriguing opportunities for nanomechanical frequency control, timing and synchronization.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Self-sustaining UHF NEMS oscillator.
Figure 2: Frequency stability and mass sensitivity of the self-sustaining UHF NEMS oscillator.
Figure 3: Phase noise performance of the self-sustaining UHF NEMS oscillator.

References

  1. Huang, X. M. H., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanodevice motion at microwave frequencies. Nature 421, 496 (2003).

    CAS  Article  Google Scholar 

  2. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    CAS  Article  Google Scholar 

  3. Yang, Y. T., Callegari, C., Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    CAS  Article  Google Scholar 

  4. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    CAS  Article  Google Scholar 

  5. Cleland, A. N. & Roukes, M. L. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    Article  Google Scholar 

  6. Audoin, C. & Guinot, B. The Measurement of Time: Time, Frequency, and the Atomic Clock (trans. Lyle, S.) (Cambridge Univ. Press, New York, 2001).

    Google Scholar 

  7. Hajimiri, A. & Lee, T. H. The Design of Low Noise Oscillators (Kluwer Academic Publishers, Norwell, 1999).

    Google Scholar 

  8. Ward, M. D. & Buttry, D. A. In situ interfacial mass detection with piezoelectric transducers. Science 249, 1000–1007 (1990).

    CAS  Article  Google Scholar 

  9. Cady, W. G. The piezo-electric resonator. Proc. IRE 10, 83–114 (1922).

    Article  Google Scholar 

  10. Nathanson, H. C., Newell, W. E., Wickstrom, R. A. & Davis, J. R. Jr. The resonant gate transistor. IEEE Trans. Electron. Dev. ED-14, 117–133 (1967).

    Article  Google Scholar 

  11. Newell, W. E. Miniaturization of tuning forks. Science 161, 1320–1326 (1968).

    CAS  Article  Google Scholar 

  12. Nguyen, C. T. C. & Howe, R. T. An integrated CMOS micromechanical resonator high-Q oscillator. IEEE J. Solid State Circ. 34, 440–455 (1999).

    Article  Google Scholar 

  13. Lin, Y. W. et al. Series-resonant VHF micromechanical resonator reference oscillators. IEEE J. Solid State Circ. 39, 2477–2491 (2004).

    Article  Google Scholar 

  14. Ham, D. & Hajimiri, A. Virtual damping and Einstein relation in oscillators. IEEE J. Solid State Circ. 38, 407–418 (2003).

    Article  Google Scholar 

  15. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    CAS  Article  Google Scholar 

  16. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    CAS  Article  Google Scholar 

  17. Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

    CAS  Article  Google Scholar 

  18. Rodahl, M., Höök, F., Krozer, A., Brzezinski, P. & Kasemo, B. Quartz crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 66, 3924–3930 (1995).

    CAS  Article  Google Scholar 

  19. Arlett, J. L., Maloney, J. R., Gudlewski, B., Muluneh, M. & Roukes, M. L. Self-sensing micro- and nanocantilevers with attonewton-scale force resolution. Nano Lett. 6, 1000–1006 (2006).

    CAS  Article  Google Scholar 

  20. Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  Google Scholar 

  21. Lee, T. H. & Hajimiri, A. Oscillator phase noise: a tutorial. IEEE J. Solid State Circ. 35, 326–336 (2000).

    Article  Google Scholar 

  22. Leeson, D. B. A simple model of feedback oscillator noise spectrum. Proc. IEEE 54, 329–330 (1966).

    Article  Google Scholar 

  23. Otis, B. P. & Rabaey, J. M. A 300 µW 1.9 GHz CMOS oscillator utilizing micromachined resonators. IEEE J. Solid State Circ. 38, 1271–1274 (2003).

    Article  Google Scholar 

  24. Vig, J. R. & Kim, Y. Noise in microelectromechanical system resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 46, 1558–1565 (1999).

    CAS  Article  Google Scholar 

  25. Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

    CAS  Article  Google Scholar 

  26. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (July 2005).

    Article  Google Scholar 

  27. Nguyen, C. T. C., Katehi, L. P. B. & Rebeiz, G. M. Micromachined devices for wireless communications. Proc. IEEE 86, 1756–1768 (1998).

    Article  Google Scholar 

  28. Cross, M. C., Zumdieck, A., Lifshitz, R. & Rogers, J. L. Synchronization by nonlinear frequency pulling. Phys. Rev. Lett. 93, 224101 (2004).

    CAS  Article  Google Scholar 

  29. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  30. Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nature Rev. Neurosci. 2, 229–239 (2001).

    CAS  Article  Google Scholar 

  31. Huang, X. M. H., Feng, X. L., Zorman, C. A., Mehregany, M. & Roukes, M. L. VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7, 247 (2005).

    Article  Google Scholar 

  32. Lin, Y. W., Li, S. S., Xie, Y., Ren, Z. & Nguyen, C. T. C. Vibrating micromechanical resonators with solid dielectric capacitive transducer gaps, in Proc. IEEE Int. Freq. Contr. Symp., August 29–31, 128–134 (IEEE, Vancouver, Canada, 2005).

  33. Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007).

    CAS  Article  Google Scholar 

  34. Cleland, A. N. & Roukes, M. L. External control of dissipation in a nanometer-scale radiofrequency mechanical resonator. Sens. Actuators A 72, 256–261 (1999).

    CAS  Article  Google Scholar 

  35. Postma, H. W. C., Kozinsky, I., Husain, A. & Roukes, M. L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett. 86, 223105 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C.T.C. Nguyen, J.R. Vig, M.C. Cross and R. Lifshitz for helpful discussions. We thank M. Mehregany and C.A. Zorman for providing SiC material. We acknowledge support from DARPA/SPAWAR under grant N66001-02-1-8914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Roukes.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, X., White, C., Hajimiri, A. et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nature Nanotech 3, 342–346 (2008). https://doi.org/10.1038/nnano.2008.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.125

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research