Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM techniques to characterize and manipulate biological systems on the nanometre scale.
Figure 2: Observing the individuality of cellular machines at high resolution.
Figure 3: Single molecule manipulation, control and design.
Figure 4: Nanoscale functional imaging of single live cells.

© 2008 BIOPHYSICAL SOCIETY © 2008 BIOPHYSICAL SOCIETY © 2007 ACS © 2007 ACS © 2007 ACS © 2007 ACS

Figure 5: Microfabricated cantilever arrays as label-free biosensors.

References

  1. Niemeyer, C. M. & Mirkin, C. A. Nanobiotechnology: Concepts, Applications and Perspectives (Wiley-VCH, Weinheim, 2004).

    Book  Google Scholar 

  2. Nanobiotechnology: Report of the National Nanotechnology Initiative Workshop, October 2003; available at http://www.nano.gov.

  3. Shirai, Y., Morin, J. F., Sasaki, T., Guerrero, J. M. & Tour, J. M. Recent progress on nanovehicles. Chem. Soc. Rev. 35, 1043–1055 (2006).

    Article  CAS  Google Scholar 

  4. Balzani, V., Credi, A. & Venturi, M. Molecular devices and machines. Nano Today 2, 18–25 (April 2007).

    Article  Google Scholar 

  5. Bayley, H. & Cremer, P. S. Stochastic sensors inspired by biology. Nature 413, 226–230 (2001).

    Article  CAS  Google Scholar 

  6. Panchal, R. G., Smart M. L., Bowser D. N., Williams D. A. & Petrou S. Pore-forming proteins and their application in biotechnology. Curr. Pharm. Biotechnol. 3, 99–115 (2002).

    Article  CAS  Google Scholar 

  7. Kitamura, K., Tokunaga, M., Iwane, A. H. & Yanagida, T. A single myosin head moves along an actin filament with regular steps of 5.3 nanometres. Nature 397, 129–134 (1999).

    Article  CAS  Google Scholar 

  8. Hess, H. et al. Molecular shuttles operating undercover: A new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Lett. 3, 1651–1655 (2003).

    Article  CAS  Google Scholar 

  9. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  Google Scholar 

  10. Soong, R. K. et al. Powering an inorganic nanodevice with a biomolecular motor. Science 290, 1555–1558 (2000).

    Article  CAS  Google Scholar 

  11. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  12. Gerber, C. & Lang, H. P. How the doors to the nanoworld were opened. Nature Nanotech. 1, 3–5 (2006).

    Article  CAS  Google Scholar 

  13. Engel, A. & Mller, D. J. Observing single biomolecules at work with the atomic force microscope. Nature Struct. Biol. 7, 715–718 (2000).

    Article  CAS  Google Scholar 

  14. Dufrne, Y. F. Using nanotechniques to explore microbial surfaces. Nature Rev. Microbiol. 2, 451–60 (2004).

    Article  CAS  Google Scholar 

  15. Müller, D. J. et al. Single-molecule studies of membrane proteins. Curr. Opin. Struct. Biol. 16, 489–495 (2006).

    Article  CAS  Google Scholar 

  16. Hoogenboom, B. W., Suda, K., Engel, A. & Fotiadis, D. The supramolecular assemblies of voltage-dependent anion channels in the native membrane. J. Mol. Biol. 370, 246–255 (2007).

    Article  CAS  Google Scholar 

  17. Seelert, H., Poetsch A., Dencher, N. A., Engel, A. & Müller, D. J. Proton powered turbine of a plant motor. Nature 405, 418–419 (2000).

    Article  CAS  Google Scholar 

  18. Pogoryelov, D. et al. The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep. 6, 1040–1044 (2005).

    Article  CAS  Google Scholar 

  19. Mller, D. J., Hand, G. M., Engel, A. & Sosinsky, G. Conformational changes in surface structures of isolated Connexin26 gap junctions. EMBO J. 21, 3598–3607 (2002).

    Article  Google Scholar 

  20. Fotiadis, D. et al. Atomic-force microscopy: Rhodopsin dimers in native disc membranes. Nature 421, 127–128 (2003).

    Article  CAS  Google Scholar 

  21. Park, P. S., Filipek, S., Wells, J. W. & Palczewski, K. Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry 43, 15643–15656 (2004).

    Article  CAS  Google Scholar 

  22. Scheuring, S. & Sturgis, J. N. Chromatic adaptation of photosynthetic membranes. Science 309, 484–487 (2005).

    Article  CAS  Google Scholar 

  23. Elie-Caille, C. et al. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol. 17, 1765–1770 (2007).

    Article  CAS  Google Scholar 

  24. Drake, B. et al. Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1588 (1989).

    Article  CAS  Google Scholar 

  25. Kasas, S. et al. Escherichia coli RNA ploymerase activity observed using atomic force microscopy. Biochemistry 36, 461–468 (1997).

    Article  CAS  Google Scholar 

  26. Grandbois, M., Clausen-Schaumann, H. & Gaub, H. Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2. Biophys. J. 74, 2398–2404 (1998).

    Article  CAS  Google Scholar 

  27. Viani, M. B. et al. Probing proteinprotein interactions in real time. Nature Struct. Biol. 7, 644–647 (2000).

    Article  CAS  Google Scholar 

  28. Yokokawa, M. et al. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. EMBO J. 25, 4567–4576 (2006).

    Article  CAS  Google Scholar 

  29. Yu, J., Bippes, C. A., Hand, G. M., Müller, D. J. & Sosinsky, G. E. Aminosulfonate modulated pH-induced conformational changes in connexin26 hemichannels. J. Biol. Chem. 282, 8895–8904 (2007).

    Article  CAS  Google Scholar 

  30. Frederix, P. L. et al. Atomic force bio-analytics. Curr. Opin. Chem. Biol. 7, 641–647 (2003).

    Article  CAS  Google Scholar 

  31. Philippsen, A. et al. Imaging the electrostatic potential of transmembrane channels: Atomic probe microscopy on OmpF porin. Biophys. J. 82, 1667–1676 (2002).

    Article  CAS  Google Scholar 

  32. Frederix, P. L. T. M. et al. Assessment of insulated conductive cantilevers for biology and electrochemistry. Nanotechnology 16, 997–1005 (2005).

    Article  CAS  Google Scholar 

  33. Moy, V.T., Florin, E. L. & Gaub, H. E. Intermolecular forces and energies between ligands and receptors. Science 266, 257–259 (1994).

    Article  CAS  Google Scholar 

  34. Lee, G. U, Kidwell, D. A. & Colton, R. J. Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

    Article  CAS  Google Scholar 

  35. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  36. Smith, M. L. et al. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5, e268 (2007).

    Article  CAS  Google Scholar 

  37. Wolynes, P. G., Onuchic, J. N. & Thirumalai, D. Navigating the folding routes. Science 267, 1619–1620 (1995).

    Article  CAS  Google Scholar 

  38. Brockwell, D. J. et al. Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nature Struct. Biol. 10, 731–737 (2003).

    Article  CAS  Google Scholar 

  39. Carrion-Vazquez, M. et al. The mechanical stability of ubiquitin is linkage dependent. Nature Struct. Biol. 10, 738–743 (2003).

    Article  CAS  Google Scholar 

  40. Dietz, H., Berkemeier, F., Bertz, M. & Rief, M. Anisotropic deformation response of single protein molecules. Proc. Natl Acad. Sci. USA 103, 12724–12728 (2006).

    Article  CAS  Google Scholar 

  41. Lee, G. et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246–249 (2006).

    Article  CAS  Google Scholar 

  42. Schwaiger, I., Sattler, C., Hostetter, D. R. & Rief, M. The myosin coiled-coil is a truly elastic protein structure. Nature Mater. 1, 232–235 (2002).

    Article  CAS  Google Scholar 

  43. Becker, N. et al. Molecular nanosprings in spider capture-silk threads. Nature Mater. 2, 278–283 (2003).

    Article  CAS  Google Scholar 

  44. Cao, Y. & Li, H. Polyprotein of GB1 is an ideal artificial elastomeric protein. Nature Mater. 6, 109–114 (2007).

    Article  CAS  Google Scholar 

  45. Evans, E. Probing the relation between forcelifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001).

    Article  CAS  Google Scholar 

  46. Oberhauser, A. F., Hansma, P. K., Carrion-Vazquez, M. & Fernandez, J. M. Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl Acad. Sci. USA 98, 468–472 (2001).

    Article  CAS  Google Scholar 

  47. Fernandez, J. M. & Li, H. Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

    Article  CAS  Google Scholar 

  48. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  Google Scholar 

  49. Kedrov, A., Janovjak, H., Sapra, K. T. & Müller, D. J. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 36, 233–260 (2007).

    Article  CAS  Google Scholar 

  50. Janovjak, H., Sapra, K. T., Kedrov, A. & Müller, D. J. From valleys to ridges: Exploring the dynamic energy landscape of single membrane proteins. Chem. Phys. Chem. (in the press); doi:10.1002/cphc.200700662.

    Article  CAS  Google Scholar 

  51. Kedrov, A., Krieg, M., Ziegler, C., Kuhlbrandt, W. & Mller, D. J. Locating ligand binding and activation of a single antiporter. EMBO Rep. 6, 668–674 (2005).

    Article  CAS  Google Scholar 

  52. Kedrov, A., Ziegler, C. & Mller, D. J. Differentiating ligand and inhibitor interactions of a single antiporter. J. Mol. Biol. 362, 925–932 (2006).

    Article  CAS  Google Scholar 

  53. Kedrov, A., Appel, M., Baumann, H., Ziegler, C. & Muller, D. J. Examining the dynamic energy landscape of an antiporter upon inhibitor binding. J. Mol. Biol. 375, 1258–1266 (2008).

    Article  CAS  Google Scholar 

  54. Mller, D. J., Wu, N. & Palczewski, K. Vertebrate membrane proteins: Structure, function and insights from biophysical approaches. Pharmacol. Rev. 60, 4378 (2008).

    Google Scholar 

  55. Best, R. B., Li, B., Steward, A., Daggett, V. & Clarke, J. Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys. J. 81, 2344–2356 (2001).

    Article  CAS  Google Scholar 

  56. Benoit, M., Gabriel, D., Gerisch, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nature Cell Biol. 2, 313–317 (2000).

    Article  CAS  Google Scholar 

  57. Krieg, M. et al. Tensile forces govern germ layer organization during gastrulation. Nature Cell Biol. 10, 429–436 (2008).

    Article  CAS  Google Scholar 

  58. Fierro, F. A. et al. BCR/ABL expression of myeloid progenitors increases b1-integrin mediated adhesion to stromal cells. J. Mol. Biol. 377, 1082–1093 (2008).

    Article  CAS  Google Scholar 

  59. Li, F., Redick, S. D., Erickson, H. P. & Moy, V. T. Force measurements of the alpha5beta1 integrin-fibronectin interaction. Biophys. J. 84, 1252–1262 (2003).

    Article  CAS  Google Scholar 

  60. Taubenberger, A. et al. Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol. Biol. Cell 18, 1634–1644 (2007).

    Article  CAS  Google Scholar 

  61. Tinazli, A., Piehler, J., Beuttler, M., Guckenberger, R. & Tampe, R. Native protein nanolithography that can write, read and erase. Nature Nanotech. 2, 220–225 (2007).

    Article  CAS  Google Scholar 

  62. Salaita, K., Wang, Y. H. & Mirkin, C. A. Applications of dip-pen nanolithography. Nature Nanotech. 2, 145–155 (2007).

    Article  CAS  Google Scholar 

  63. Kufer, S. K., Puchner, E., Gumpp, H., Liedl, T. & Gaub, H. E. Single molecule cut and paste. Science 319, 594–596 (2008).

    Article  CAS  Google Scholar 

  64. Weisenhorn, A. L., Khorsandi, M., Kasas, S., Gotzos, V. & Butt, H.-J. Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4, 106–113 (1993).

    Article  CAS  Google Scholar 

  65. Rotsch, C. & Radmacher, M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 78, 520–535 (2000).

    Article  CAS  Google Scholar 

  66. Rotsch, C., Jacobson, K. & Radmacher M. Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy. Proc. Natl Acad. Sci. USA 96, 921–926 (1999).

    Article  CAS  Google Scholar 

  67. Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P. & Hansma, P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567 (1996).

    Article  CAS  Google Scholar 

  68. Matzke, R., Jacobson, K. & Radmacher, M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature Cell Biol. 3, 607–610 (2001).

    Article  CAS  Google Scholar 

  69. Cross, S. E, Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).

    Article  CAS  Google Scholar 

  70. Higgins, M. J., Sader, J. E., Mulvaney, P. & Wetherbee, R. Probing the surface of living diatoms with atomic force microscopy: The nanostructure and nanomechanical properties of the mucilage layer. J. Phycol. 39, 722–734 (2003).

    Article  Google Scholar 

  71. Francius, G., Tesson, B., Dague, E., Martin-Jézéquel, V. & Dufrêne, Y. F. Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes Env. Microbiol. 10, 1344–1356 (2008).

    Article  CAS  Google Scholar 

  72. Touhami, A., Nysten, B. & Dufrêne, Y. F. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19, 4539–4543 (2003).

    Article  CAS  Google Scholar 

  73. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438 (2007).

    Article  Google Scholar 

  74. Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. & Lieber, C. M. Functional-group imaging by chemical force microscopy. Science 265, 2071–2074 (1994).

    Article  CAS  Google Scholar 

  75. Noy, A. Chemical force microscopy of chemical and biological interactions. Surf. Interf. Anal. 38, 1429–1441 (2006).

    Article  CAS  Google Scholar 

  76. Dague, E. et al. Chemical force microscopy of single live cells. Nano Lett. 7, 3026–3030 (2007).

    Article  CAS  Google Scholar 

  77. Dague, E., Alsteens, D., Latgé, J. P. & Dufrêne, Y. F. High-resolution cell surface dynamics of germinating Aspergillus fumigatus conidia. Biophys. J. 94, 656–660 (2008).

    Article  CAS  Google Scholar 

  78. Alsteens, D., Dague, E., Rouxhet, P. G., Baulard, A. R. & Dufrêne, Y. F. Direct measurement of hydrophobic forces on cell surfaces using AFM. Langmuir 23, 11977–11979 (2007).

    Article  CAS  Google Scholar 

  79. Alsteens, D. et al. Organization of the mycobacterial cell wall: a nanoscale view. Pflugers Arch. Eur. J. Physiol. 456, 117–125 (2008).

    Article  CAS  Google Scholar 

  80. Hinterdorfer, P. & Dufrêne, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Article  CAS  Google Scholar 

  81. Hinterdorfer, P., Baumgartner, W., Gruber, H. J., Schilcher, K. & Schindler, H. Detection and localization of individual antibody–antigen recognition events by atomic force microscopy. Proc. Natl Acad. Sci. USA 93, 3477–3481 (1996).

    Article  CAS  Google Scholar 

  82. Lee, G. U., Chrisey, L. A. & Colton, R. J. Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773 (1994).

    Article  CAS  Google Scholar 

  83. Fritz, J., Katopidis, A. G., Kolbinger, F. & Anselmetti, D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl Acad. Sci. USA 95, 12283–12288 (1998).

    Article  CAS  Google Scholar 

  84. Ludwig, M., Dettmann, W. & Gaub, H. E. Atomic force microscope imaging contrast based on molecular recognition. Biophys. J. 72, 445–448 (1997).

    Article  CAS  Google Scholar 

  85. Raab, A. et al. Antibody recognition imaging by force microscopy. Nature Biotechnol. 17, 902–905 (1999).

    Article  CAS  Google Scholar 

  86. Chtcheglova, L. A., Waschke, J., Wildling, L., Drenckhahn, D. & Hinterdorfer, P. Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys. J. 93, L11–L13 (2007).

    Article  CAS  Google Scholar 

  87. Lee, S., Mandic, J. & Van Vliet K. J. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc. Natl Acad. Sci. USA 104, 9609–9614 (2007).

    Article  CAS  Google Scholar 

  88. Dupres, V. et al. Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nature Meth. 2, 515–520 (2005).

    Article  CAS  Google Scholar 

  89. Gilbert, Y. et al. Single-molecule force spectroscopy and imaging of the Vancomycin/D-Ala-D-Ala interaction. Nano Lett. 7, 796–801 (2007).

    Article  CAS  Google Scholar 

  90. Lang, H. P., Hegner, M., Meyer, E. & Gerber, C. Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology 13, R29–R36 (2002).

    Article  CAS  Google Scholar 

  91. Nugaeva, N. et al. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens. Bioelectron. 21, 849–856 (2005).

    Article  CAS  Google Scholar 

  92. Nugaeva, N. et al. An antibody-sensitized microfabricated cantilever for the growth detection of Aspergillus niger spores. Microsc. Microanal. 13, 13–17 (2007).

    Article  CAS  Google Scholar 

  93. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).

    Article  CAS  Google Scholar 

  94. McKendry, R. et al. Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Natl Acad. Sci. USA 99, 9783–9788 (2002).

    Article  CAS  Google Scholar 

  95. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  Google Scholar 

  96. Wu, G. H. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nature Biotechnol. 19, 856–860 (2001).

    Article  CAS  Google Scholar 

  97. Arntz, Y. et al. Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology 14, 86–90 (2003).

    Article  CAS  Google Scholar 

  98. Huber, F., Hegner, M., Gerber, C., Guntherodt, H. J. & Lang, H. P. Label free analysis of transcription factors using microcantilever arrays. Biosens. Bioelectron. 21, 1599–1605 (2006).

    Article  CAS  Google Scholar 

  99. Zhang, J. et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nature Nanotech. 1, 214–220 (2006).

    Article  CAS  Google Scholar 

  100. Huber, F. et al. Analyzing gene expression using combined nanomechanical cantilever sensors. J. Phys.: Conf. Ser. 61, 450–453 (2007).

    CAS  Google Scholar 

  101. Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K. & Toda, A. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    Article  CAS  Google Scholar 

  102. Humphris, A. D. L., Hobbs, J. K. & Miles, M. J. Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second. Appl. Phys. Lett. 83, 6–8 (2003).

    Article  CAS  Google Scholar 

  103. Willig, K. I. et al. Nanoscale resolution in GFP-based microscopy. Nature Meth. 3, 721–723 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Foundation for Scientific Research (FNRS), the Région wallonne, the Université catholique de Louvain (Fonds Spéciaux de Recherche), the Federal Office for Scientific, Technical and Cultural Affairs (Interuniversity Poles of Attraction Programme), the Research Department of Communauté Française de Belgique (Concerted Research Action), the Deutsche Forschungsgemeinschaft (DFG), the European Union and the Free State of Saxony. Y.F.D. is a Research Associate of the FNRS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel J. Müller or Yves F. Dufrêne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, D., Dufrêne, Y. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nature Nanotech 3, 261–269 (2008). https://doi.org/10.1038/nnano.2008.100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing