Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Processable aqueous dispersions of graphene nanosheets

Abstract

Graphene sheets offer extraordinary electronic, thermal and mechanical properties and are expected to find a variety of applications. A prerequisite for exploiting most proposed applications for graphene is the availability of processable graphene sheets in large quantities. The direct dispersion of hydrophobic graphite or graphene sheets in water without the assistance of dispersing agents has generally been considered to be an insurmountable challenge. Here we report that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization. This discovery has enabled us to develop a facile approach to large-scale production of aqueous graphene dispersions without the need for polymeric or surfactant stabilizers. Our findings make it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scheme showing the chemical route to the synthesis of aqueous graphene dispersions.
Figure 2: Surface properties of GO and CCG.
Figure 3: Colloidal and morphological characterization of CCG dispersions.
Figure 4: UV-vis absorption spectra showing the change of GO dispersions as a function of reaction time.
Figure 5: Examples demonstrating that films made of CCG sheets can be easily fabricated from CCG dispersions using various solution-phase processing techniques.

References

  1. 1

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    CAS  Article  Google Scholar 

  3. 3

    McAllister, M. J. et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Stankovich, S. et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Kotov, N. A., Dekany, I. & Fendler, J. H. Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv. Mater. 8, 637–641 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Cassagneau, T., Guerin, F. & Fendler, J. H. Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers. Langmuir 16, 7318–7324 (2000).

    CAS  Article  Google Scholar 

  10. 10

    Kovtyukhova, N. I. et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Hirata, M., Gotou, T. & Ohba, M. Thin-film particles of graphite oxide 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43, 503–510 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Szabo, T., Szeri, A. & Dekany, I. Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43, 87–94 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Lerf, A., He, H. Y., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 102, 4477–4482 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Szabo, T. et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater. 18, 2740–2749 (2006).

    CAS  Article  Google Scholar 

  15. 15

    Everett, D. H. Basic Principles of Colloid Science (The Royal Society of Chemistry, London, 1988).

    Book  Google Scholar 

  16. 16

    Li, D. & Kaner, R. B. Processable stabilizer-free polyaniline nanofiber aqueous colloids. Chem. Commun. 3286–3288 (2005).

  17. 17

    Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Niyogi, S. et al. Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105–1113 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Bahr, J. L. & Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952–1958 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Sun, Y. P., Fu, K. F., Lin, Y. & Huang, W. J. Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35, 1096–1104 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Gilje, S., Han, S., Wang, M., Wang, W. & Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 7, 3394–3398 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Gómez-Navarro, C. et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 7, 3499–3503 (2007).

    Article  Google Scholar 

  23. 23

    Skakalova, V., Kaiser, A. B., Dettlaff-Weglikowska, U., Hrncarikova, K. & Roth, S. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes. J. Phys. Chem. B 109, 7174–7181 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Kirchmeyer, S. & Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077–2088 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Hammond, P. T. Form and function in multilayer assembly: new applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Tang, Z. Y., Wang, Y., Podsiadlo, P. & Kotov, N. A. Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18, 3203–3224 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Jan, E. & Kotov, N. A. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotubes composite. Nano Lett. 7, 1123–1128 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

D.L. and G.G.W. acknowledge support from the Australian Research Council. R.B.K. thanks the Microelectronics Advanced Research Corporation for financial support.

Author information

Affiliations

Authors

Contributions

D.L. conceived and designed the experiments, R.B.K. and G.G.W. were involved in discussions on the design and interpretation of the experiments, and D.L., M.B.M. and S.G. performed the experiments. D.L., R.B.K. and G.G.W. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Dan Li or Gordon G. Wallace.

Supplementary information

Supplementary Information

Supplementary information and supplementary table S1 (PDF 171 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, D., Müller, M., Gilje, S. et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech 3, 101–105 (2008). https://doi.org/10.1038/nnano.2007.451

Download citation

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research