Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires

Abstract

Whenever a nanosystem such as an adatom, a cluster or a nanowire spontaneously magnetizes, a crucial parameter is its magnetic anisotropy, the intrinsic preference of magnetization to lie along an easy axis1. Anisotropy is important in nanosystems because it helps reduce the magnitude of thermal (superparamagnetic) fluctuations, it can modify the flow of current, and it can induce new phenomena, such as the quantum tunnelling of magnetization2. We discuss here, on the basis of density functional calculations, the novel and unconventional feature of colossal magnetic anisotropy—the strict impossibility of magnetization to rotate from the parallel to the orthogonal direction—which, owing to a quantum mechanical selection rule, the recently predicted Pt nanowire magnetism should exhibit. Model calculations suggest that the colossal magnetic anisotropy of a Pt chain should persist after weak adsorption on an inert substrate or surface step.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic moments and energy gains versus interatomic spacing d in a suspended monatomic Pt nanowire.
Figure 2: Monatomic Pt nanowire at zero-strain interatomic spacing d0 = 2.35 Å.
Figure 3: The onset of magnetism in a suspended Pt nanowire.
Figure 4: Pt nanowire (at equilibrium spacing) deposited symmetrically on a surface step.

Similar content being viewed by others

References

  1. Rado, G. T. & Suhl, H. Magnetism (Academic Press, New York and London, 1963).

  2. Chudnovsky, E. M. & Gunther, L. Quantum tunneling of magnetization in small ferromagnetic particles. Phys. Rev. Lett. 60, 661–664 (1988).

    Article  CAS  Google Scholar 

  3. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).

    Article  CAS  Google Scholar 

  4. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

    Article  CAS  Google Scholar 

  5. Rodrigues, V., Bettini, J., Silva, P. C. & Ugarte, D. Evidence for spontaneous spin-polarized transport in magnetic nanowires. Phys. Rev. Lett. 91, 096801 (2003).

    Article  Google Scholar 

  6. Rubio-Bollinger, G. et al. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001).

    Article  Google Scholar 

  7. Agrait, N., Yeyati, A. L. & van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 377, 81–279 (2003).

    Article  CAS  Google Scholar 

  8. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002).

    Article  CAS  Google Scholar 

  9. Spisak, D. & Hafner, J. Magnetism of ultrathin wires suspended in free space and adsorbed on vicinal surfaces. Phys. Rev. B 67, 214416 (2003).

    Article  Google Scholar 

  10. Delin, A. & Tosatti, E. Magnetic phenomena in 5d transition metal nanowires. Phys. Rev. B 68, 144434 (2003).

    Article  Google Scholar 

  11. Delin, A., Tosatti, E. & Weht, R. Magnetism in atomic-sized palladium contacts and nanowires. Phys. Rev. Lett. 92, 057201 (2004).

    Article  CAS  Google Scholar 

  12. Delin, A. & Tosatti, E. Emerging magnetism in platinum nanowires. Surf. Sci., 566–568, 262–267 (2004).

    Article  Google Scholar 

  13. Stepanyuk, V. S. et al. Magnetism and structure of atomic-size nanocontacts. Phys. Rev. B, 70, 195420 (2004).

    Article  Google Scholar 

  14. Gambardella, P. et al. Oscillatory magnetic anisotropy in one-dimensional atomic wires. Phys. Rev. Lett. 93, 077203 (2004).

    Article  CAS  Google Scholar 

  15. Viret, M. et al. Giant anisotropic magneto-resistance in ferromagnetic atomic contacts. Eur. Phys. J. B 51, 1–4 (2006).

    Article  CAS  Google Scholar 

  16. Mokrousov, Y., Bihlmayer, G., Heinze, S. & Blugel, S. Giant magnetocrystalline anisotropies of 4d transition metal monowires. Phys. Rev. Lett. 96, 147201 (2006).

    Article  CAS  Google Scholar 

  17. Montero, M. I. et al. Magnetoresistance of mechanically stable Co nanoconstrictions. Phys. Rev. B 70, 184418 (2004).

    Article  Google Scholar 

  18. Gabureac, M., Viret, M., Ott, F. & Fermon, C. Magnetoresistance in nanocontacts induced by magnetostrictive effects. Phys. Rev. B 69, 100401 (2004).

    Article  Google Scholar 

  19. Velev, J., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Ballistic anisotropic magnetoresistance. Phys. Rev. Lett. 94, 127203 (2005).

    Article  CAS  Google Scholar 

  20. Smit, R. H. M., Untiedt, C., Yanson, A. I. & van Ruitenbeek, J. M. Common origin for surface reconstruction and the formation of chains of metal atoms. Phys. Rev. Lett. 87, 266102 (2001).

    Article  CAS  Google Scholar 

  21. Dal Corso, A., Smogunov, A. & Tosatti, E. Ab initio ballistic conductance with spin–orbit coupling: application to monoatomic wires. Phys. Rev. B 74, 045429 (2006).

    Article  Google Scholar 

  22. Untiedt, C., Dekker, D. M. T., Djukic, D. & van Ruitenbeek, J. M. Absence of magnetically induced fractional quantization in atomic contacts. Phys. Rev. B 69, 081401 (2004).

    Article  Google Scholar 

  23. Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. in WIEN2K, An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (ed. Schwarz, K.) (Vienna University of Technology, Austria, 2001). (http://www.wien2k.at.)

    Google Scholar 

  24. Wills, J. M., Eriksson, O., Alouani, M. & Price, O. L. in Electronic Structure and Physical Properties of Solids (ed. Dreysse, H.) (Springer-Verlag, Berlin, 2000).

    Google Scholar 

  25. Desjonquères, M. C., Barreteau, C., Autès, G. & Spanjaard, D. Orbital contribution to the magnetic properties of nanowires: is the orbital polarization ansatz justified? Eur. Phys. J. B 55, 23–27 (2007).

    Article  Google Scholar 

  26. Baroni, S. et al. (http://www.quantum-espresso.org.)

Download references

Acknowledgements

Work in SISSA was sponsored by PRIN Cofin 2006022847, as well as by INFM/CNR ‘Iniziativa trasversale calcolo parallelo’. R.W. is a member of CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) and gratefully acknowledges fruitful discussions with J. Guevara. Support from grants PICT No. 03-13996 (ANPCyT-Argentina) and PIP No. 6135 (CONICET) is also acknowledged. A.D. acknowledges financial support from VR, the European Commission and SSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Tosatti.

Supplementary information

Supplementary Information

Supplementary table and supplementary figure S1 (PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smogunov, A., Dal Corso, A., Delin, A. et al. Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires. Nature Nanotech 3, 22–25 (2008). https://doi.org/10.1038/nnano.2007.419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing