Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale memory cell based on a nanoelectromechanical switched capacitor

Abstract

The demand for increased information storage densities has pushed silicon technology to its limits and led to a focus on research on novel materials and device structures, such as magnetoresistive random access memory1,2,3 and carbon nanotube field-effect transistors4,5,6,7,8,9, for ultra-large-scale integrated memory10. Electromechanical devices are suitable for memory applications because of their excellent ‘ON–OFF’ ratios and fast switching characteristics, but they involve larger cells and more complex fabrication processes than silicon-based arrangements11,12,13. Nanoelectromechanical devices based on carbon nanotubes have been reported previously14,15,16,17, but it is still not possible to control the number and spatial location of nanotubes over large areas with the precision needed for the production of integrated circuits. Here we report a novel nanoelectromechanical switched capacitor structure based on vertically aligned multiwalled carbon nanotubes in which the mechanical movement of a nanotube relative to a carbon nanotube based capacitor defines ‘ON’ and ‘OFF’ states. The carbon nanotubes are grown with controlled dimensions at pre-defined locations on a silicon substrate in a process that could be made compatible with existing silicon technology, and the vertical orientation allows for a significant decrease in cell area over conventional devices. We have written data to the structure and it should be possible to read data with standard dynamic random access memory sensing circuitry. Simulations suggest that the use of high-k dielectrics in the capacitors will increase the capacitance to the levels needed for dynamic random access memory applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A NEM switch based on vertically aligned multiwalled carbon nanotubes.
Figure 2: NEM switching characteristics.
Figure 3: The capacitance of a NEM switch.
Figure 4: Writing and reading data to a NEM memory cell.

Similar content being viewed by others

References

  1. Parkin, S. S. P. et al. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J. Appl. Phys. 85, 5828–5833 (1999).

    Article  CAS  Google Scholar 

  2. Reohr, W. et al. Memories of tomorrow. IEEE Circuits & Devices 18, 17–27 (2002).

    Article  Google Scholar 

  3. Hillebrands, B. & Fassbender, J. Ultrafast magnetic switching. Nature 418, 493–495 (2002).

    Article  CAS  Google Scholar 

  4. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  5. Kong, J., Soh, H. T., Cassell, A. M., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  CAS  Google Scholar 

  6. Martel, R., Schmidt, T., Shea, H. R., Hertel, T. & Avouris, Ph. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447–2449 (1998)

    Article  CAS  Google Scholar 

  7. Fuhrer, M. S., Kim, B. M., Durkop, T. & Brintlinger, T. High-mobility nanotube transistor memory. Nano Lett. 2, 755–759 (2002).

    Article  CAS  Google Scholar 

  8. Radosavljevic, M., Freitag, M., Thadani, K. V. & Johnson, A. T. Nonvolatile molecular memory elements based on ambipolar nanotube field effect transistor. Nano Lett. 2, 761–764 (2002).

    Article  CAS  Google Scholar 

  9. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  CAS  Google Scholar 

  10. Nakagome, Y., Horiguchi, M., Kawahara, T. & Itoh, K. Review and future prospects of low-voltage RAM circuits. IBM J. Res. Dev. 47, 525–552 (2003).

    Article  Google Scholar 

  11. Petersen, K. E. Micromechanical membrane switches on silicon. IBM J. Res. Dev. 23, 376–385 (1979).

    Article  CAS  Google Scholar 

  12. Yao, Z. J., Che, S., Eshelman, S., Denniston, D. & Goldsmith, C. Micromachined low-loss microwave switches. IEEE J. Microelectromech. Syst. 8, 129–134 (1999).

  13. Gou, F. M. et al. Study on low voltage actuated MEMS rf capacitive switches. Sensors and Actuators A 108, 128–133 (2003).

    Article  Google Scholar 

  14. Kim, P. & Lieber, C. M. Nanotube nanotweezer. Science 286, 2148–2150 (1999).

    Article  CAS  Google Scholar 

  15. Rueckes, T. et al. Carbon nanotube-based non-volatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  CAS  Google Scholar 

  16. Dequesnes, M., Rotkin, S. V. & Aluru, N. R. Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13, 120–131 (2002).

    Article  Google Scholar 

  17. Badzey, R. L., Zoflagharkhani, G., Gaidarzhy, A. & Mohanty, P. A controllable nanomechanical memory element. Appl. Phys. Lett. 85, 3587–3589 (2004).

    Article  CAS  Google Scholar 

  18. Prince, B. Semiconductor Memories 2nd edn, Ch. 6 (Wiley, New York, 1991).

    Google Scholar 

  19. Park, Y. K. et al. Effective capacitance enhancement methods for 90-nm DRAM capacitors. J. Korean Phys. Soc. 44, 112–116 (2004).

    CAS  Google Scholar 

  20. Chhowalla, M. et al. Growth processes conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308–5316 (2001).

    Article  CAS  Google Scholar 

  21. Teo, K. B. K. et al. Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibers—how uniform do they grow? Nanotechnology 14, 204–211 (2003).

    Article  CAS  Google Scholar 

  22. Jang, J. E. et al. Nanoscale capacitors based on metal–insulator–carbon nanotube–metal structures. Appl. Phys. Lett. 87, 263103 (2005).

    Article  Google Scholar 

  23. Ha, D. et al. Anomalous junction leakage current induced by STI dissociation and its impact on dynamic random access memory devices. IEEE Trans. Electron. Devices 46, 940–946 (1999).

    Article  Google Scholar 

  24. Kim, K., Hwang, C. & Lee, J. G. DRAM technology perspective for gigabit era. IEEE Trans. Electron. Devices 45, 598–608 (1998)

    Article  CAS  Google Scholar 

  25. Wilk, G. D., Wallace, R. M. & Anthony, J. M. High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).

    Article  CAS  Google Scholar 

  26. Zhang, Y. et al. Electric-field-directed growth of aligned single-walled carbon nanotubes. Appl. Phys. Lett. 79, 3155–3157 (2001).

    Article  CAS  Google Scholar 

  27. Hoffman, S. et al. Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Appl. Phys. Lett. 83, 4661–4663 (2003).

    Article  Google Scholar 

  28. Roukes, M. L. Nanoelectromechanical systems. In Technical Digest of the 2000 Solid-State Sensor and Actuator Workshop, Hilton Head Isl, SC, 4–8 June 2000 (Transducer Research Foundation, Cleveland, 2000) 〈http://arxiv.org/pdf/condmat/0008187〉.

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.E.J. was involved in project conception, planning, experimental work and data analysis, S.N.C. in project conception, experimental work and data analysis, Y.J.C., T.B., D.J.K. and J.E. Jung in experimental work, D.G.H. in experimental guidance and direction, J.M.K. in project conception and data analysis, G.A.J.A. in project conception and guidance, data analysis and interpretation.

Correspondence and requests for materials should be addressed to G.A.J.A.

Corresponding author

Correspondence to Gehan A. J. Amaratunga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, J., Cha, S., Choi, Y. et al. Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nature Nanotech 3, 26–30 (2008). https://doi.org/10.1038/nnano.2007.417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing