Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carrier-mediated magnetoelectricity in complex oxide heterostructures

Abstract

Increasing demands for high-density, stable nanoscale memory elements, as well as fundamental discoveries in the field of spintronics, have led to renewed interest in exploring the coupling between magnetism and electric fields. Although conventional magnetoelectric routes often result in weak responses, there is considerable current research activity focused on identifying new mechanisms for magnetoelectric coupling. Here we demonstrate a linear magnetoelectric effect that arises from a carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO3/SrTiO3 interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behaviour, the interface displays a spatial coexistence of magnetism and dielectric polarization, suggesting a route to a new type of interfacial multiferroic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated magnetization induced by an external voltage.
Figure 2: Schematic of the carrier-mediated magnetoelectricity mechanism.

Similar content being viewed by others

References

  1. O'Dell, T. The Electrodynamics of Magneto-Electric Media (North-Holland, Amsterdam, 1970).

    Google Scholar 

  2. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R1–R30 (2005).

    Article  Google Scholar 

  3. Dzyaloshinskii, I. On the magneto-electric effect in antiferromagnets. Soviet Phys. J. Expt. Theor. Phys. 10, 628629 (1960).

    Google Scholar 

  4. Astrov, D. The magnetoelectric effect in antiferromagnetics. Soviet Phys. J. Expt. Theor. Phys. 11, 708709 (1960).

    Google Scholar 

  5. Binek, C. & Doudin, B. Magnetoelectronics with magnetoelectrics. J. Phys.: Condens. Matter 17, L39–L44 (2005).

    CAS  Google Scholar 

  6. Borisov, P., Hochstrat, A., Chen, X., Kleemann, W. & Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

    Article  Google Scholar 

  7. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).

    Article  CAS  Google Scholar 

  8. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  Google Scholar 

  9. Srinivasan, G. et al. Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001).

    Article  Google Scholar 

  10. Zheng, H. et al. Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661–663 (2004).

    Article  CAS  Google Scholar 

  11. Borisov, P., Hochstrat, A., Chen, X. & Kleemann, W. Multiferroically composed exchange bias systems. Phase Transitions 79, 1123–1133 (2006).

    Article  CAS  Google Scholar 

  12. Dong, S., Cheng, J., Li, J. F. & Viehland, D. Enhanced magnetoelectric effects in laminate composites of terfenol-D/Pb(Zr,Ti)O3 under resonant drive. Appl. Phys. Lett. 83, 4812–4814 (2003).

    Article  CAS  Google Scholar 

  13. Zhao, T. et al. Electrically controllable antiferromagnets: Nanoscale observation of coupling between antiferromagnetism and ferroelectricity in multiferroic BiFeO3 . Nature Mater. 5, 823–829 (2006).

    Article  CAS  Google Scholar 

  14. Ohno, H. et al. Electric-field control of magnetism. Nature 408, 944–946 (2000).

    Article  Google Scholar 

  15. Tanaka, H., Zhang, J. & Kawai, T. Giant electric field modulation of double exchange ferromagnetism at room temperature in the perovskite manganite/titanate pn junction. Phys. Rev. Lett. 88, 027204 (2002).

    Article  Google Scholar 

  16. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, Y. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    Article  Google Scholar 

  17. Yamada, H. et al. Engineered interface of magnetic oxides. Science 305, 646–648 (2004).

    Article  CAS  Google Scholar 

  18. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  CAS  Google Scholar 

  19. Stengel, M. & Spaldin, N. A. Ab-initio theory of metal–insulator interfaces in a finite electric field. Phys. Rev. B 75, 205121 (2007).

    Article  Google Scholar 

  20. Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    Article  CAS  Google Scholar 

  21. Velev, J. P. et al. Negative spin polarization and large tunneling magnetoresistance in epitaxial Co–SrTiO3–Co magnetic tunnel junctions. Phys. Rev. Lett. 95, 216601 (2005).

    Article  CAS  Google Scholar 

  22. Marrec, F. L. et al. Magnetic behavior of epitaxial SrRuO3 thin films under pressure up to 23 GPa. Appl. Phys. Lett. 80, 2338–2340 (2002).

    Article  Google Scholar 

  23. Ahn, C. H. et al. Ferroelectric field effect in ultrathin SrRuO3 films. Appl. Phys. Lett. 70, 206–208 (1997).

    Article  CAS  Google Scholar 

  24. Takahashi, K. S. et al. Local switching of two-dimensional superconductivity using the ferroelectric field effect. Nature 441, 195–198 (2006).

    Article  CAS  Google Scholar 

  25. Gallagher, W. J. & Parkin, S. S. P. Development of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip. IBM J. Res. Dev. 50, 5–23 (2006).

    Article  CAS  Google Scholar 

  26. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  27. Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  28. Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).

    Article  CAS  Google Scholar 

  29. VandeVondele, J. & De Vita, A. First-principles molecular dynamics of metallic systems. Phys. Rev. B 60, 13241–13244 (1999).

    Article  Google Scholar 

  30. Stengel, M. & De Vita, A. First-principles molecular dynamics of metals: A Lagrangian formulation. Phys. Rev. B 62, 15283–15286 (2000).

    Article  CAS  Google Scholar 

  31. Antons, A., Neaton, J. B., Rabe, K. M. & Vanderbilt, D. Tunability of the dielectric response of epitaxially strained SrTiO3 from first principles. Phys. Rev. B 71, 024102 (2005).

    Article  Google Scholar 

  32. Allen, P. B. et al. Transport properties, thermodynamic properties, and electronic structure of SrRuO3 . Phys. Rev. B 53, 4393–4398 (1996).

    Article  CAS  Google Scholar 

  33. Singh, D. J. Electronic and magnetic properties of the 4d itinerant magnet SrRuO3 . J. Appl. Phys. 79, 4818–4820 (1996).

    Article  CAS  Google Scholar 

  34. Mazin, I. I. & Singh, D. J. Electronic structure and magnetism in Ru-based perovskites. Phys. Rev. B 56, 2556–2571 (1997).

    Article  CAS  Google Scholar 

  35. Baroni, S., de Gironcoli, S. & Corso, A. D. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  Google Scholar 

  36. Fennie, C. J. & Rabe, K. M. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97, 267602 (2006).

    Article  Google Scholar 

  37. Duan, C.-G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).

    Article  Google Scholar 

  38. Pickett, W. E. Spin-density-functional-based search for half-metallic antiferromagnets. Phys. Rev. B 57, 10613–10619 (1998).

    Article  CAS  Google Scholar 

  39. Chaudhuri, A. R., Ranjith, R., Krupanidhi, S. B., Mangalam, R. V. K. & Sundaresan, A. Interface dominated biferroic La0.6Sr0.4MnO3/0.7Pb(Mg1/3 Nb2/3)O3–0.3PbTiO3 epitaxial superlattices. Appl. Phys. Lett. 90, 122902 (2007).

    Article  Google Scholar 

  40. Giustino, F. & Pasquarello, A. Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys. Rev. B 71, 144104 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy SciDac program on Quantum Simulations of Materials and Nanostructures, grant number DE-FC02-06ER25794 (M.S.), and by the National Science Foundation Nanoscale Interdisciplinary Research Team programme, grant number 0609377 (J.M.R). N.A.S. thanks the Miller Institute at UC Berkeley for their support through a Miller Research Professorship.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the calculations. Formal extensions to density functional theory to include finite electric field calculations ab initio were implemented by M.S., and the calculations were performed by J.M.R. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Nicola A. Spaldin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondinelli, J., Stengel, M. & Spaldin, N. Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nature Nanotech 3, 46–50 (2008). https://doi.org/10.1038/nnano.2007.412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing