Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-performance lithium battery anodes using silicon nanowires

Abstract

There is great interest in developing rechargeable lithium batteries with higher energy capacity and longer cycle life for applications in portable electronic devices, electric vehicles and implantable medical devices1. Silicon is an attractive anode material for lithium batteries because it has a low discharge potential and the highest known theoretical charge capacity (4,200 mAh g−1; ref. 2). Although this is more than ten times higher than existing graphite anodes and much larger than various nitride and oxide materials3,4, silicon anodes have limited applications5 because silicon's volume changes by 400% upon insertion and extraction of lithium which results in pulverization and capacity fading2. Here, we show that silicon nanowire battery electrodes circumvent these issues as they can accommodate large strain without pulverization, provide good electronic contact and conduction, and display short lithium insertion distances. We achieved the theoretical charge capacity for silicon anodes and maintained a discharge capacity close to 75% of this maximum, with little fading during cycling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of morphological changes that occur in Si during electrochemical cycling.
Figure 2: Electrochemical data for Si NW electrodes.
Figure 3: Morphology and electronic changes in Si NWs from reaction with Li.
Figure 4: Structural evolution of Si NWs during lithiation.

Similar content being viewed by others

References

  1. Nazri, G.-A. & Pistoia, G. Lithium Batteries: Science and Technology (Kluwer Academic/Plenum, Boston, 2004).

    Google Scholar 

  2. Boukamp, B. A., Lesh, G. C. & Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 128, 725–729 (1981).

    Article  CAS  Google Scholar 

  3. Shodai, T., Okada, S., Tobishima, S. & Yamaki, J. Study of Li3–xMxN (M:Co, Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics 86–88, 785–789 (1996).

    Article  Google Scholar 

  4. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    Article  CAS  Google Scholar 

  5. Kasavajjula, U., Wang, C. & Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007).

    Article  CAS  Google Scholar 

  6. Green, M., Fielder, E., Scrosati, B., Wachtler, M. & Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75–A79 (2003).

    Article  CAS  Google Scholar 

  7. Ryu, J. H., Kim, J. W., Sung, Y.-E. & Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7, A306–A309 (2004).

    Article  CAS  Google Scholar 

  8. Graetz, J., Ahn, C. C., Yazami, R. & Fultz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194–A197 (2003).

    Article  CAS  Google Scholar 

  9. Gao, B., Sinha, S., Fleming, L. & Zhou, O. Alloy formation in nanostructured silicon. Adv. Mater. 13, 816–819 (2001).

    Article  CAS  Google Scholar 

  10. Che, G., Lakshmi, B. B., Fisher, E. R. & Martin, C. R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393, 346–349 (1998).

    Article  CAS  Google Scholar 

  11. Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    Article  CAS  Google Scholar 

  12. Shaju, K. M., Jiao, F., Debart, A. & Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 9, 1837–1842 (2007).

    Article  CAS  Google Scholar 

  13. Park, M.-S. et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edn 46, 750–753 (2007).

    Article  CAS  Google Scholar 

  14. Armstrong, G., Armstrong, A. R., Bruce, P. G., Reale, P. & Scrosati, B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 18, 2597–2600 (2006).

    Article  CAS  Google Scholar 

  15. Li, N., Patrissi, C. J., Che, G. & Martin, C. R. Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. J. Electrochem. Soc. 147, 2044–2049 (2000).

    Article  CAS  Google Scholar 

  16. Yang, J., Winter, M. & Besenhard, J. O. Small particle size multiphase Li-alloy anodes for lithium-ion batteries. Solid State Ionics 90, 281–287 (1996).

    Article  CAS  Google Scholar 

  17. Huggins, R. A. & Nix, W. D. Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000).

    Article  CAS  Google Scholar 

  18. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    Article  CAS  Google Scholar 

  19. Huang, M. H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001).

    Article  CAS  Google Scholar 

  20. Dick, K. A. et al. A new understanding of Au-assisted growth of III-V semiconductor nanowires. Adv. Funct. Mater. 15, 1603–1610 (2005).

    Article  CAS  Google Scholar 

  21. Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  Google Scholar 

  22. Wang, Y., Schmidt, V., Senz, S. & Gosele, U. Epitaxial growth of silicon nanowires using an aluminum catalyst. Nature Nanotech. 1, 186–189 (2006).

    Article  CAS  Google Scholar 

  23. Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006).

    Article  CAS  Google Scholar 

  24. Netz, A., Huggins, R. A. & Weppner, W. The formation and properties of amorphous silicon as negative electrode reactant in lithium systems. J. Power Sources 119–121, 95–100 (2003).

    Article  Google Scholar 

  25. Li, J. & Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156–A161 (2007).

    Article  CAS  Google Scholar 

  26. Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).

    Article  CAS  Google Scholar 

  27. Hatchard, T. D. & Dahn, J. R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838–A842 (2004).

    Article  CAS  Google Scholar 

  28. Lee, Y. M., Lee, J. Y., Shim, H.-T., Lee, J. K. & Park, J.-K. SEI layer formation on amorphous Si thin electrode during precycling. J. Electrochem. Soc. 154, A515–A519 (2007).

    Article  CAS  Google Scholar 

  29. Wu, Y. et al. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 4, 433–436 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Marshall for help with TEM interpretation and Professors Brongersma and Clemens for technical help. Y.C. acknowledges support from the Stanford New Faculty Startup Fund and Global Climate and Energy Projects. C.K.C. acknowledges support from a National Science Foundation Graduate Fellowship and Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

C.K.C. conceived and carried out the experiment and data analysis. H.P., G.L., K.M. and X.F.Z. assisted in experimental work. R.A.H. carried out data analysis. Y.C. conceived the experiment and carried out data analysis. C.K.C., R.A.H. and Y.C. wrote the paper.

Corresponding author

Correspondence to Yi Cui.

Supplementary information

Supplementary Information

Supplementary methods and supplementary figures S1–S5 (PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, C., Peng, H., Liu, G. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing