Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plumbing carbon nanotubes

Abstract

Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures—from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes1,2,3. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes—regardless of their diameters—to form new nanotube structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic images of three typical geometries for joining CNTs.
Figure 2: Successful and unsuccessful joining attempts on two different types of SWNTs.
Figure 3: W-assisted joining of two DWNTs.

Similar content being viewed by others

References

  1. Terrones, M., Terrones, H., Banhart, F., Charlier, J.-C. & Ajayan, P. M. Coalescence of single-walled carbon nanotubes. Science 288, 1226–1229 (2000).

    Article  CAS  Google Scholar 

  2. Terrones, M. et al. Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89, 075505 (2002).

    Article  CAS  Google Scholar 

  3. Wang, M. S., Wang, J. Y., Chen, Q. & Peng, L. M. Fabrication and electrical and mechanical properties of carbon nanotube interconnections. Adv. Funct. Mater. 15, 1825–1831 (2005).

    Article  CAS  Google Scholar 

  4. Huang, J. Y. et al. Superplastic carbon nanotubes. Nature 439, 281 (2006).

    Article  CAS  Google Scholar 

  5. Ding, F., Jiao, K., Lin, Y. & Yakobson, B. I. How evaporating carbon nanotubes retain their perfection? Nano Lett. 7, 681–684 (2007).

    Article  CAS  Google Scholar 

  6. Yoo, M. et al. Zipper mechanism of nanotube fusion: theory and experiment. Phys. Rev. Lett. 92, 075504 (2004).

    Article  Google Scholar 

  7. Dunlap, B. I. Relating carbon tubules. Phys. Rev. B 49, 5643–5650 (1994).

    Article  CAS  Google Scholar 

  8. Hashimoto, A., Suenaga, K., Golter, A., Urita, K. & Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004).

    Article  CAS  Google Scholar 

  9. Zhao, Y. F., Yakobson, B. I. & Smalley, R. E. Dynamic topology of fullerene coalescence. Phys. Rev. Lett. 88, 185501 (2002).

    Article  Google Scholar 

  10. Zhao, Y. F., Smalley, R. E. & Yakobson, B. I. Coalescence of fullerene cages: topology, energetics, and molecular dynamics simulation. Phys. Rev. B 66, 195409 (2002).

  11. Han, S. et al. Microscopic mechanism of fullerene fusion. Phys. Rev. B 70, 113402 (2004).

    Article  Google Scholar 

  12. Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

    Article  CAS  Google Scholar 

  13. Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M. & Iijima, S. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48–54 (2001).

    Article  CAS  Google Scholar 

  14. Pop, E., Mann, D., Wang, Q., Goodson, K. & Dai, H. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96–100 (2006).

    Article  CAS  Google Scholar 

  15. Sorbello, R. S. Theory of electromigration. Solid State Phys. 51, 159–231, (1998).

    Article  CAS  Google Scholar 

  16. Suenaga, K. et al. Imaging active topological defects in carbon nanotubes. Nature Nanotech. 2, 358–360 (2007).

    Article  CAS  Google Scholar 

  17. Regan, B. C., Aloni, S., Ritchie, R. O., Dahmen, U. & Zettl, A. Carbon nanotubes as nanoscale mass conveyors. Nature 428, 924–927 (2004).

    Article  CAS  Google Scholar 

  18. Svensson, K., Olin, H. & Olsson, E. Nanopipettes for metal transport. Phys. Rev. Lett. 93, 145901 (2004 ).

    Article  CAS  Google Scholar 

  19. Iijima, S. & Ichihashi, T. Structural instability of ultrafine particles of metals. Phys. Rev. Lett. 56, 616–619 (1986).

    Article  CAS  Google Scholar 

  20. Kiang, C. H., Goddard III, W. A., Beyers, R., Salem, J. R. & Bethune, D. S. Catalytic effects of heavy metals on the growth of carbon nanotubes and nanoparticles. J. Phys. Chem. Solids 57, 35–39 (1996).

    Article  CAS  Google Scholar 

  21. Raty, J.-Y., Gygi, F. & Galli, G. Growth of carbon nanotubes on metal nanoparticles: a microscopic mechanism from ab initio molecular dynamics simulations. Phys. Rev. Lett. 95, 096103 (2005).

    Article  Google Scholar 

  22. Rodriguez-Manzo, J. A. et al. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nature Nanotech. 2, 307–311 (2007).

    Article  CAS  Google Scholar 

  23. Endo, M. et al. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes. Nano Lett. 5, 1099–1105 (2005).

    Article  CAS  Google Scholar 

  24. Dyke, W. P. & Trolan, J. K. Field emission: large current densities, space charge, and the vacuum arc. Phys. Rev. 89, 799–808 (1953).

    Article  Google Scholar 

  25. Ajayan, P. M. et al. Growth of manganese filled carbon nanofibers in the vapor phase. Phys. Rev. Lett. 72, 1722–1725 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.J. thanks the Japan Society for Promotion of Science for a postdoctoral fellowship. The work on microscopy is partly supported by CREST.

Author information

Authors and Affiliations

Authors

Contributions

C. J., K.S. and S.I. conceived and designed the experiments. C.J. performed the experiments and analysed the data. C.J. and K.S. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Chuanhong Jin or Kazu Suenaga.

Supplementary information

Supplementary Information

Supplementary figures S1–S3, supplementary tables S1 and S2, and supplementary movie captions (PDF 783 kb)

Supplementary Information

Supplementary Movie 1 (MOV 2858 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1996 kb)

Supplementary Information

Supplementary Movie 3 (MOV 789 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1075 kb)

Supplementary Information

Supplementary Movie 5 (MOV 4861 kb)

Supplementary Information

Supplementary Movie 6 (MOV 749 kb)

Supplementary Information

Supplementary Movie 7 (MOV 6126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, C., Suenaga, K. & Iijima, S. Plumbing carbon nanotubes. Nature Nanotech 3, 17–21 (2008). https://doi.org/10.1038/nnano.2007.406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing