Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures

Abstract

Nature routinely produces nanostructured surfaces with useful properties1,2,3,4, such as the self-cleaning lotus leaf5, the colour of the butterfly wing6, the photoreceptor in brittlestar7 and the anti-reflection observed in the moth eye8. Scientists and engineers have been able to mimic some of these natural structures in the laboratory and in real-world applications9,10,11,12. Here, we report a simple aperiodic array of silicon nanotips on a 6-inch wafer with a sub-wavelength structure that can suppress the reflection of light at a range of wavelengths from the ultraviolet, through the visible part of the spectrum, to the terahertz region. Reflection is suppressed for a wide range of angles of incidence and for both s- and p-polarized light. The antireflection properties of the silicon result from changes in the refractive index caused by variations in the height of the silicon nanotips, and can be simulated with models that have been used to explain the low reflection from moth eyes8,13,14. The improved anti-reflection properties of the surfaces could have applications in renewable energy and electro-optical devices for the military.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographic and scanning electron microscopy (SEM) images of a 6-inch silicon nanotips (SiNTs) wafer.
Figure 2: Broadband anti-reflection properties of silicon nanotips (SiNTs).
Figure 3: Angle of incidence and polarization-dependent anti-reflection properties of silicon nanotips (SiNTs).
Figure 4: Gradient refractive-index profile simulation of the surface of the SiNTs.

Similar content being viewed by others

References

  1. Lee, L. P. & Szema, R. Inspirations from biological optics for advanced photonic systems. Science 310, 1148–1150 (2005).

    Article  CAS  Google Scholar 

  2. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  CAS  Google Scholar 

  3. Parker, A. R. & Townley, H. E. Biomimetics of photonic nanostructures. Nature Nanotech. 2, 347–353 (2007).

    Article  CAS  Google Scholar 

  4. Potyrailo, R. A. et al. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photon. 1, 123–128 (2007).

    Article  CAS  Google Scholar 

  5. Neinhuis, C. & Barthlott, W. Characterisation and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 79, 667–677 (1997).

    Article  Google Scholar 

  6. Ghiradella, H. et al. Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales. Science 178, 1214–1217 (1972).

    Article  CAS  Google Scholar 

  7. Aizenberg, J. et al. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819–822 (2001).

    Article  CAS  Google Scholar 

  8. Bernhard, C. G. Structural and functional adaptation in a visual system. Endeavour 26, 79–84 (1967).

    Google Scholar 

  9. Srinivasarao, M. Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935–1961 (1999).

    Article  CAS  Google Scholar 

  10. Feng, L. et al. Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 14, 1857–1860 (2002).

    Article  CAS  Google Scholar 

  11. Gu, Z. Z. et al. Structural color and the lotus effect. Angew. Chem. Int. Edn 42, 894–897 (2003).

    Article  CAS  Google Scholar 

  12. Groning, P. Nanotechnology: An approach to mimic natural architectures and concepts. Adv. Eng. Mater. 7, 279–291 (2005).

    Article  Google Scholar 

  13. Clapham, P. B. & Hutley, M. C. Reduction of lens reflection by moth eye principle. Nature 244, 281–282 (1973).

    Article  Google Scholar 

  14. Wilson, S. J. & Hutley, M. C. The optical-properties of moth eye antireflection surfaces. Optica Acta 29, 993–1009 (1982).

    Article  Google Scholar 

  15. Southwell, W. H. Pyramid-array surface-relief structures producing antireflection index matching on optical-surfaces. J. Opt. Soc. Am. A 8, 549–553 (1991).

    Article  CAS  Google Scholar 

  16. Grann, E. B. Moharam, M. G. & Pommet, D. A. Optimal-design for antireflective tapered two-dimensional subwavelength grating structures. J. Opt. Soc. Am. A 12, 333–339 (1995).

    Article  Google Scholar 

  17. Xi, J. Q. et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature Photon. 1, 176–179 (2007).

    Article  CAS  Google Scholar 

  18. Lee, C. et al. A novel silicon nanotips antireflection surface for the micro sun sensor. Nano Lett. 5, 2438–2442 (2005).

    Article  CAS  Google Scholar 

  19. Chattopadhyay, S., Chen, L. C. & Chen, K. H. Nanotips: Growth, model, and applications. Crit. Rev. Solid State Mater. Sci. 31, 15–53 (2006).

    Article  CAS  Google Scholar 

  20. Striemer, C. C. & Fauchet, P. M. Dynamic etching of silicon for broadband antireflection applications. Appl. Phys. Lett. 81, 2980–2982 (2002).

    Article  CAS  Google Scholar 

  21. Kanamori, Y., Sasaki, M. & Hane, K. Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 24, 1422–1424 (1999).

    Article  CAS  Google Scholar 

  22. Kanamori, Y. et al. 100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask. Appl. Phys. Lett. 78, 142–143 (2001).

    Article  CAS  Google Scholar 

  23. Yu, Z. et al. Fabrication of large area subwavelength antireflection structures on Si using trilayer resist nanoimprint lithography and liftoff. J. Vac. Sci. Technol. B 21, 2874–2877 (2003).

    Article  CAS  Google Scholar 

  24. Zaidi, S. H., Ruby, D. S. & Gee, J. M. Characterisation of random reactive ion etched-textured silicon solar cells. IEEE Trans. Electron Devices 48, 1200–1206 (2001).

    Article  CAS  Google Scholar 

  25. Kanamori, Y., Ishimori, M. & Hane, K. High efficient light-emitting diodes with antireflection subwavelength gratings. IEEE Photon. Technol. Lett. 14, 1064–1066 (2002).

    Article  Google Scholar 

  26. Glaser, T. et al. High temperature resistant antireflective moth-eye structures for infrared radiation sensors. Microsyst. Technol. 11, 86–90 (2005).

    Article  CAS  Google Scholar 

  27. Hsu, C. H. et al. Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Lett. 4, 471–475 (2004).

    Article  CAS  Google Scholar 

  28. Chen, K. H. et al. Method of forming a nanotip array in a substrate by forming masks on portions of the substrate and etching the unmasked portions. US patent 6,960,528 B2 (2005).

  29. Hsu, C. H. et al. Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching. J. Vac. Sci. Technol. B 24, 308–311 (2006).

    Article  CAS  Google Scholar 

  30. Macleod, H. A. in Thin Film Optical Filters 3rd edn (Taylor & Francis, London, 2001).

    Book  Google Scholar 

  31. Minot. M. J. The angular reflectance of single-layer gradient refractive-index films. J. Opt. Soc. Am. 67, 1046–1050 (1977).

    Article  CAS  Google Scholar 

  32. Dobrowolski, J. A. & Piotrowski, S. H. C. Refractive index as a variable in the numerical design of optical thin film systems. Appl. Opt. 21, 1502–1511 (1982).

    Article  CAS  Google Scholar 

  33. Lalanne, P. & Morris, G. M. Antireflection behavior of silicon subwavelength periodic structures for visible light. Nanotechnology 8, 53–56 (1997).

    Article  CAS  Google Scholar 

  34. Dobrowolski, J. A. et al. Toward perfect antireflection coatings. 3. Experimental results obtained with the use of Reststrahlen materials. Appl. Opt. 45, 1555–1562 (2006).

    Article  CAS  Google Scholar 

  35. Poitras, D. et al. Toward perfect antireflection coatings. 2. Theory. Appl. Opt. 43, 1286–1295 (2004).

    Article  Google Scholar 

  36. Tompkins, H. G. in A User's Guide to Ellipsometry (Academic Press, New York, 1999).

    Google Scholar 

  37. Gatesman, A. J. et al. An anti-reflection coating for silicon optics at terahertz frequencies. IEEE Microw. Guid. Wave Lett. 10, 264–266 (2000).

    Article  Google Scholar 

  38. Brückner, C. et al. Broadband antireflective surface-relief structure for THz optics. Opt. Express 15, 779–789 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Ministry of Education under the ATU plan and the National Science Council in Taiwan, the Air Force Office of Scientific Research, the Asian Office of Aerospace Research and Development and the US Army Research Office in the Far East.

Author information

Authors and Affiliations

Authors

Contributions

Y.F.H. conceived and performed the UV-VIS, IR and angle-dependent experiments; H.C.L. and C.H.H. synthesized the SiNTs; Y.H.C. and C.S.L. performed the far IR measurements; T.A.L. Y.K.H. and C.L.P. performed the THz measurements; Y.J.J. and C.Y.P. carried out the theoretical analyses; Y.F.H., S.C., K.H.C. and L.C.C. discussed and interpreted the result; and S.C., K.H.C. and L.C.C. co-wrote the paper.

Corresponding authors

Correspondence to Surojit Chattopadhyay or Li-Chyong Chen.

Supplementary information

Supplementary Information

Supplementary figures S1–S5 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YF., Chattopadhyay, S., Jen, YJ. et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotech 2, 770–774 (2007). https://doi.org/10.1038/nnano.2007.389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.389

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing