Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanocarriers as an emerging platform for cancer therapy

Abstract

Nanotechnology has the potential to revolutionize cancer diagnosis and therapy. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. However, to date, there are only a few clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. This review examines some of the approved formulations and discusses the challenges in translating basic research to the clinic. We detail the arsenal of nanocarriers and molecules available for selective tumour targeting, and emphasize the challenges in cancer treatment.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic representation of different mechanisms by which nanocarriers can deliver drugs to tumours.
Figure 2: Common targeting agents and ways to improve their affinity and selectivity.
Figure 3: Examples of nanocarriers for targeting cancer.

References

  1. Stewart, B. W. & Kleihues, P. World Cancer Report (World Health Organization Press, Geneva, 2003).

    Google Scholar 

  2. Cancer Facts & Figures 2007 (American Cancer Society, Atlanta, 2007).

  3. Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    CAS  Google Scholar 

  4. Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005).

    CAS  Google Scholar 

  5. Couvreur, P. & Vauthier, C. Nanotechnology: Intelligent design to treat complex disease. Pharm. Res. 23, 1417–1450 (2006).

    CAS  Google Scholar 

  6. Alonso, M. J. Nanomedicines for overcoming biological barriers. Biomed. Pharmacother. 58, 168–172 (2004).

    Google Scholar 

  7. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer-chemotherapy — Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  8. Yuan, F. et al. Vascular-permeability in a human tumor xenograft — Molecular-size dependence and cutoff size. Cancer Res. 55, 3752–3756 (1995).

    CAS  Google Scholar 

  9. Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 4, 145–160 (2005).

    CAS  Google Scholar 

  10. Hobbs, S. K. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl Acad. Sci. USA 95, 4607–4612 (1998).

    CAS  Article  Google Scholar 

  11. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58 (2002).

    CAS  Google Scholar 

  12. Peer, D. & Margalit, R. Fluoxetine and reversal of multidrug resistance. Cancer Lett. 237, 180–187 (2006).

    CAS  Google Scholar 

  13. Jain, R. K. Barriers to drug-delivery in solid tumors. Sci. Am. 271, 58–65 (1994).

    CAS  Google Scholar 

  14. de Menezes, D. E. L., Pilarski, L. M. & Allen, T. M. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res. 58, 3320–3330 (1998).

    Google Scholar 

  15. Park, J. W. et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8, 1172–1181 (2002).

    CAS  Google Scholar 

  16. Allen, T. M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer 2, 750–763 (2002).

    CAS  Google Scholar 

  17. Pastan, I., Hassan, R., FitzGerald, D. J. & Kreitman, R. J. Immunotoxin therapy of cancer. Nat. Rev. Cancer 6, 559–565 (2006).

    CAS  Google Scholar 

  18. Peer, D., Zhu, P., Carman, C. V., Lieberman, J. & Shimaoka, M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl Acad. Sci. USA 104, 4095–4100 (2007).

    CAS  Google Scholar 

  19. Sapra, P. & Allen, T. M. Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res. 62, 7190–7194 (2002).

    CAS  Google Scholar 

  20. Allen, T. M. Long-circulating (sterically stabilized) liposomes for targeted drug-delivery. Trends Pharmacol. Sci. 15, 215–220 (1994).

    CAS  Google Scholar 

  21. Adams, G. P. et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 61, 4750–4755 (2001).

    CAS  Google Scholar 

  22. Hong, S. et al. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem. Biol. 14, 107–115 (2007).

    CAS  Google Scholar 

  23. Warenius, H. M., Galfre, G., Bleehen, N. M. & Milstein, C. Attempted targeting of A monoclonal-antibody in a human-tumor xenograft system. Eur. J. Cancer Clin. Oncology 17, 1009–1015 (1981).

    CAS  Google Scholar 

  24. von Mehren, A. G., Weiner L. M. Monoclonal antibody therapy for cancer. Annu. Rev. Med. 54, 343–369 (2003).

    CAS  Google Scholar 

  25. Weiner, L. M. & Adams, G. P. New approaches to antibody therapy. Oncogene 19, 6144–6151 (2000).

    CAS  Google Scholar 

  26. Gabizon, A. A. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest. 19, 424–436 (2001).

    CAS  Google Scholar 

  27. James, J. S. & Dubs, G. FDA approves new kind of lymphoma treatment. AIDS Treat. News 284, 2–3 (1997).

    Google Scholar 

  28. Albanell, J. & Baselga, J. Trastuzumab, a humanized anti-HER2 monoclonal antibody, for the treatment of breast cancer. Drugs Today 35, 931–946 (1999).

    CAS  Google Scholar 

  29. Ferrara, N. VEGF as a therapeutic target in cancer. Oncology 69 (Suppl. 3), 11–16 (2005).

    CAS  Google Scholar 

  30. Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118–129 (2001).

    CAS  Google Scholar 

  31. Marks, J. D. Selection of internalizing antibodies for drug delivery. Methods Mol. Biol. 248, 201–208 (2004).

    CAS  Google Scholar 

  32. Marks, J. D. et al. Human-antibody fragments specific for human blood-groups antigens from a phage display library. Bio-Technol. 11, 1145–1149 (1993).

    CAS  Google Scholar 

  33. Liu, B., Conrad, F., Cooperberg, M. R., Kirpotin, D. B. & Marks, J. D. Mapping tumor epitope space by direct selection of single-chain Fv antibody libraries on prostate cancer cells. Cancer Res. 64, 704–710 (2004).

    CAS  Google Scholar 

  34. Arnold, D. M. et al. Systematic review: efficacy and safety of rituximab for adults with idiopathic thrombocytopenic purpura. Ann. Intern. Med. 146, 25–33 (2007).

    Google Scholar 

  35. Trail, P. A. et al. Cure of xenografted human carcinomas by Br96-doxorubicin immunoconjugates. Science 261, 212–215 (1993).

    CAS  Google Scholar 

  36. Tolcher, A. W. et al. Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. J. Clin. Oncology 17, 478–484 (1999).

    CAS  Google Scholar 

  37. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    CAS  Google Scholar 

  38. Silverman, J. et al. Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat. Biotechnol. 23, 1556–1561 (2005).

    CAS  Google Scholar 

  39. Cortez-Retamozo, V. et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 64, 2853–2857 (2004).

    CAS  Google Scholar 

  40. Nord, K. et al. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nat. Biotechnol. 15, 772–777 (1997).

    CAS  Google Scholar 

  41. White, R. R., Sullenger, B. A. & Rusconi, C. P. Developing aptamers into therapeutics. J. Clin. Invest. 106, 929–934 (2000).

    CAS  Google Scholar 

  42. Farokhzad, O. C. et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl Acad. Sci. USA 103, 6315–6320 (2006).

    CAS  Google Scholar 

  43. Sanfilippo, J. S. et al. Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri. Cancer 77, 710–716 (1996).

    CAS  Google Scholar 

  44. Antony, A. C. The biological chemistry of folate receptors. Blood 79, 2807–2820 (1992).

    CAS  Google Scholar 

  45. Prost, A. C. et al. Differential transferrin receptor density in human colorectal cancer: A potential probe for diagnosis and therapy. Int. J. Oncol. 13, 871–875 (1998).

    CAS  Google Scholar 

  46. Kukowska-Latallo, J. F. et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 65, 5317–5324 (2005).

    CAS  Google Scholar 

  47. Iinuma, H. et al. Intracellular targeting therapy of cisplatin-encapsulated transferrin-polyethylene glycol liposome on peritoneal dissemination of gastric cancer. Int. J. Cancer 99, 130–137 (2002).

    CAS  Google Scholar 

  48. Ishida, O. et al. Liposomes bearing polyethyleneglycol-coupled transferrin with intracellular targeting property to the solid tumors in vivo. Pharm. Res. 18, 1042–1048 (2001).

    CAS  Google Scholar 

  49. Ekblom, P., Thesleff, I., Lehto, V. P. & Virtanen, I. Distribution of the transferrin receptor in normal human-fibroblasts and fibro-sarcoma cells. Int. J. Cancer 31, 111–117 (1983).

    CAS  Google Scholar 

  50. Li, J. et al. Fusion protein from RGD peptide and Fc fragment of mouse immunoglobulin G inhibits angiogenesis in tumor. Cancer Gene Ther. 11, 363–370 (2004).

    CAS  Google Scholar 

  51. Ruoslahti, E. Cell adhesion and tumor metastasis. Princess Takamatsu Symp. 24, 99–105 (1994).

    CAS  Google Scholar 

  52. Peer, D. & Margalit, R. Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia 6, 343–353 (2004).

    CAS  Google Scholar 

  53. Hu, Z., Sun, Y. & Garen, A. Targeting tumor vasculature endothelial cells and tumor cells for immunotherapy of human melanoma in a mouse xenograft model. Proc. Natl Acad. Sci. USA 96, 8161–8166 (1999).

    CAS  Google Scholar 

  54. Peer, D. & Margalit, R. Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models. Int. J. Cancer 108, 780–789 (2004).

    CAS  Google Scholar 

  55. Eliaz, R. E. & Szoka, F. C. Jr. Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res. 61, 2592–2601 (2001).

    CAS  Google Scholar 

  56. LaVan, D. A., McGuire, T. & Langer, R. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21, 1184–1191 (2003).

    CAS  Google Scholar 

  57. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).

    CAS  Google Scholar 

  58. Schraa, A. J. et al. Targeting of RGD-modified proteins to tumor vasculature: A pharmacokinetic and cellular distribution study. Int. J. Cancer 102, 469–475 (2002).

    CAS  Google Scholar 

  59. Halin, C. et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat. Biotechnol. 20, 264–269 (2002).

    CAS  Google Scholar 

  60. Satchi-Fainaro, R. et al. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med. 10, 255–261 (2004).

    CAS  Google Scholar 

  61. Satchi-Fainaro, R., Duncan, R. & Barnes, C. M. in Polymer Therapeutics II: Polymers as Drugs, Conjugates and Gene Delivery Systems Vol. 193 (eds Satchi-Fainaro, R. & Duncan, R.) 1–65 (Springer-Verlag, Berlin, 2006).

    Google Scholar 

  62. Couvreur, P., Kante, B., Roland, M. & Speiser, P. Adsorption of anti-neoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J. Pharm. Sci. 68, 1521–1524 (1979).

    CAS  Google Scholar 

  63. Couvreur, P. et al. Tissue distribution of anti-tumor drugs associated with polyalkylcyanoacrylate nanoparticles. J. Pharm. Sci. 69, 199–202 (1980).

    CAS  Google Scholar 

  64. Couvreur, P., Kante, B., Grislain, L., Roland, M. & Speiser, P. Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicin-loaded nanoparticles. J. Pharm. Sci. 71, 790–792 (1982).

    CAS  Google Scholar 

  65. Hrkach, J. S., Peracchia, M. T., Domb, A., Lotan, N. & Langer, R. Nanotechnology for biomaterials engineering: Structural characterization of amphiphilic polymeric nanoparticles by H-1 NMR spectroscopy. Biomaterials 18, 27–30 (1997).

    CAS  Google Scholar 

  66. Calvo, P., RemunanLopez, C., VilaJato, J. L. & Alonso, M. J. Chitosan and chitosan ethylene oxide propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res. 14, 1431–1436 (1997).

    CAS  Google Scholar 

  67. Elsamaligy, M. S. & Rohdewald, P. Reconstituted collagen nanoparticles, a novel drug carrier delivery system. J. Pharm. Pharmacol. 35, 537–539 (1983).

    CAS  Google Scholar 

  68. Moses, M. A., Brem, H. & Langer, R. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 4, 337–341 (2003).

    CAS  Google Scholar 

  69. Farokhzad, O. C. & Langer, R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliv. Rev. 58, 1456–1459 (2006).

    CAS  Google Scholar 

  70. Guo, R. et al. Synthesis of alginic acid-poly[2-(diethylamino)ethyl methacrylate] monodispersed nanoparticles by a polymer-monomer pair reaction system. Biomacromolecules 8, 843–850 (2007).

    CAS  Google Scholar 

  71. Gabizon, A. A. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin. Cancer Res. 7, 223–225 (2001).

    CAS  Google Scholar 

  72. Safra, T. et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol. 11, 1029–1033 (2000).

    CAS  Google Scholar 

  73. Ahmed, F. et al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol. Pharm. 3, 340–350 (2006).

    CAS  Google Scholar 

  74. Discher, D. E. & Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 8, 323–341 (2006).

    CAS  Google Scholar 

  75. Matsumura, Y. et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Brit. J. Cancer 91, 1775–1781 (2004).

    CAS  Google Scholar 

  76. Kato, K. et al. Phase I study of NK105, a paclitaxel-incorporating micellar nanoparticle, in patients with advanced cancer. J. Clin. Oncol 24 (suppl.), 2018 (2006).

    Google Scholar 

  77. Torchilin, V. P. Micellar nanocarriers: Pharmaceutical perspectives. Pharm. Res. 24, 1–16 (2007).

    CAS  Google Scholar 

  78. Brigger, I., Dubernet, C. & Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 54, 631–651 (2002).

    CAS  Google Scholar 

  79. Kreuter, J. & Higuchi, T. Improved delivery of methoxsalen. J. Pharm. Sci. 68, 451–454 (1979).

    CAS  Google Scholar 

  80. Papahadjopoulos, D. et al. Sterically stabilized liposomes - improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl Acad. Sci. USA 88, 11460–11464 (1991).

    CAS  Google Scholar 

  81. Haran, G., Cohen, R., Bar, L. K. & Barenholz, Y. Transmembrane ammonium-sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1151, 201–215 (1993).

    CAS  Google Scholar 

  82. Gabizon, A. A., Shmeeda, H. & Zalipsky, S. Pros and cons of the liposome platform in cancer drug targeting. J. Liposome Res. 16, 175–183 (2006).

    CAS  Google Scholar 

  83. Lorusso, D. et al. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia ('hand-foot' syndrome). Ann. Oncol. (2007).

  84. Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005).

    CAS  Google Scholar 

  85. Damascelli, B. et al. Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007). Cancer 92, 2592–2602 (2001).

    CAS  Google Scholar 

  86. Gillies, E. R. & Frechet, J. M. J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10, 35–43 (2005).

    CAS  Google Scholar 

  87. Malik, N. et al. Dendrimers: Relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of I-125-labelled polyamidoamine dendrimers in vivo. J. Control. Release 65, 133–148 (2000).

    CAS  Google Scholar 

  88. Morawski, A. M., Lanza, G. A. & Wickline, S. A. Targeted contrast agents for magnetic resonance imaging and ultrasound. Curr. Opin. Biotechnol. 16, 89–92 (2005).

    CAS  Google Scholar 

  89. Loo, C., Lowery, A., Halas, N., West, J., Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005).

    CAS  Google Scholar 

  90. Chen, J. et al. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5, 473–477 (2005).

    CAS  Google Scholar 

  91. Danson, S. et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP 1049C) in patients with advanced cancer. Brit. J. Cancer 90, 2085–2091 (2004).

    CAS  Google Scholar 

  92. Batrakova, E. V. et al. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: In vivo evaluation of anti-cancer activity. Brit. J. Cancer 74, 1545–1552 (1996).

    CAS  Google Scholar 

  93. Goren, D. et al. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 6, 1949–1957 (2000).

    CAS  Google Scholar 

  94. Matsuo, H. et al. Possibility of the reversal of multidrug resistance and the avoidance of side effects by liposomes modified with MRK-16, a monoclonal antibody to P-glycoprotein. J. Control. Release 77, 77–86 (2001).

    CAS  Google Scholar 

  95. Duncan, R., Vicent, M. J., Greco, F. & Nicholson, R. I. Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocrine-Relat. Cancer 12, S189–S199 (2005).

    CAS  Google Scholar 

  96. Wong, H. L. et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res. 23, 1574–1585 (2006).

    CAS  Google Scholar 

  97. Garcion, E. et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol. Cancer Ther. 5, 1710–1722 (2006).

    CAS  Google Scholar 

  98. Lee, E. S., Na, K. & Bae, Y. H. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J. Control. Release 103, 405–418 (2005).

    CAS  Google Scholar 

  99. Sapra, P. & Allen, T. M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res. 42, 439–462 (2003).

    CAS  Google Scholar 

  100. Moghimi, S. M. Recent developments in polymeric nanoparticle engineering and their applications in experimental and clinical oncology. Anticancer Agents Med. Chem. 6, 553–561 (2006).

    CAS  Google Scholar 

  101. Lee, K. S. et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat. (2007).

  102. Nakanishi, T. et al. Development of the polymer micelle carrier system for doxorubicin. J. Control. Release 74, 295–302 (2001).

    CAS  Google Scholar 

  103. Hirsch, L. R. et al. Metal nanoshells. Ann. Biomed. Engin. 34, 15–22 (2006).

    Google Scholar 

  104. Sokolov, K. et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 63, 1999–2004 (2003).

    CAS  Google Scholar 

  105. Chen, J. Y. et al. Facile synthesis of gold-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 128, 14776–14777 (2006).

    CAS  Google Scholar 

  106. Kontermann, R. E. Immunolliposomes for cancer therapy. Curr. Opin. Mol. Ther. 8, 39–45 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Shiladitya Sengupta for critically reviewing the manuscript and Maeve Cullinane for helpful discussions. This work was supported by federal funds NIH/NCI CA119349, NIH/NIBIB EB 003647, and NIH R01-EB000244. The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Langer.

Ethics declarations

Competing interests

O.C.F. and R.L. have financial interest in BIND Bioscience. The rest of the authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peer, D., Karp, J., Hong, S. et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech 2, 751–760 (2007). https://doi.org/10.1038/nnano.2007.387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.387

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research