Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Downscaling of self-aligned, all-printed polymer thin-film transistors

A Corrigendum to this article was published on 01 January 2008

Abstract

Printing is an emerging approach for low-cost, large-area manufacturing of electronic circuits, but it has the disadvantages of poor resolution, large overlap capacitances, and film thickness limitations, resulting in slow circuit speeds and high operating voltages. Here, we demonstrate a self-aligned printing approach that allows downscaling of printed organic thin-film transistors to channel lengths of 100–400 nm. The use of a crosslinkable polymer gate dielectric with 30–50 nm thickness ensures that basic scaling requirements are fulfilled and that operating voltages are below 5 V. The device architecture minimizes contact resistance effects, enabling clean scaling of transistor current with channel length. A self-aligned gate configuration minimizes parasitic overlap capacitance to values as low as 0.2–0.6 pF mm−1, and allows transition frequencies of fT = 1.6 MHz to be reached. Our self-aligned process provides a way to improve the performance of printed organic transistor circuits by downscaling, while remaining compatible with the requirements of large-area, flexible electronics manufacturing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-aligned inkjet printing (SAP).
Figure 2: Thin polymer gate dielectrics and device scaling.
Figure 4: Fully downscaled SAG pBTTT transistor and switching speed.
Figure 3: Self-aligned gate (SAG) architecture.

Similar content being viewed by others

References

  1. Sanderson, K. Display of flexibility. Nature 445, 473 (2007).

    Article  CAS  Google Scholar 

  2. Ong, B. S., Wu, Y. L., Liu, P. & Gardner, S. High-performance semiconducting polythiophenes for organic thin-film transistors. J. Am. Chem. Soc. 126, 3378–3379 (2004).

    Article  CAS  Google Scholar 

  3. Heeney, M. et al. Stable polythiophene semiconductors incorporating thieno[2,3-b]thiophene. J. Am. Chem. Soc. 127, 1078–1079 (2005).

    Article  CAS  Google Scholar 

  4. McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Mater. 5, 328–333 (2006).

    Article  CAS  Google Scholar 

  5. Fix, W., Ullmann, A., Ficker, J. & Clemens, W. Fast polymer integrated circuits. Appl. Phys. Lett. 81, 1735–1737 (2002).

    Article  CAS  Google Scholar 

  6. Steudel, S. et al. Comparison of organic diode structures regarding high-frequency rectification behavior in radio-frequency identification tags. J. Appl. Phys. 99, 114519 (2006).

    Article  Google Scholar 

  7. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  CAS  Google Scholar 

  8. Zielke, D. et al. Polymer-based organic field-effect transistor using offset printed source/drain structures. Appl. Phys. Lett. 87, 123508 (2005).

    Article  Google Scholar 

  9. Knobloch, A., Manuelli, A., Bernds, A. & Clemens, W. Fully printed integrated circuits from solution processable polymers. J. Appl. Phys. 96, 2286–2291 (2004).

    Article  CAS  Google Scholar 

  10. Weste, N. H. E. & Harris, D. CMOS VLSI Design, Ch. 1 (Pearson Education, Boston, 2005).

    Google Scholar 

  11. Sze, S. M. Physics of Semiconductor Devices, Ch. 8 (John Wiley & Sons, New York, 1981).

    Google Scholar 

  12. Sele, C. W., von Werne, T., Friend, R. H. & Sirringhaus, H. Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv. Mater. 17, 997–1001 (2005).

    Article  CAS  Google Scholar 

  13. Austin, M. D. & Chou, S. Y. Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography. Appl. Phys. Lett. 81, 4431–4433 (2002).

    Article  CAS  Google Scholar 

  14. Zhao, N. et al. Self-aligned inkjet printing of highly conducting gold electrodes with submicron resolution. J. Appl. Phys. 101, 064513 (2007).

    Article  Google Scholar 

  15. Chua, L. L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Article  CAS  Google Scholar 

  16. Yoon, M. H., Yan, H., Facchetti, A. & Marks, T. J. Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. J. Am. Chem. Soc. 127, 10388–10395 (2005).

    Article  CAS  Google Scholar 

  17. Jang, Y. et al. Low-voltage and high-field-effect mobility organic transistors with a polymer insulator. Appl. Phys. Lett. 88, 072101 (2006).

    Article  Google Scholar 

  18. Yang, S. Y., Kim, S. H., Shin, K., Jeon, H. & Park, C. E. Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics. Appl. Phys. Lett. 88, 173507 (2006).

    Article  Google Scholar 

  19. Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

    Article  CAS  Google Scholar 

  20. Tulevski, G. S., Nuckolls, C., Afzali, A., Graham, T. O. & Kagan, C. R. Device scaling in sub-100 nm pentacene field-effect transistors. Appl. Phys. Lett. 89, 183101 (2006).

    Article  Google Scholar 

  21. Shur, M., Hack, M. & Shaw, J. G. A new analytic model for amorphous-silicon thin-film transistors. J. Appl. Phys. 66, 3371–3380 (1989).

    Article  Google Scholar 

  22. Campbell, I. H. et al. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B 54, 14321–14324 (1996).

    Article  Google Scholar 

  23. de Boer, B., Hadipour, A., Mandoc, M. M., van Woudenbergh, T. & Blom, P. W. M. Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 17, 621–625 (2005).

    Article  CAS  Google Scholar 

  24. Ashkenasy, G., Cahen, D., Cohen, R., Shanzer, A. & Vilan, A. Molecular engineering of semiconductor surfaces and devices. Acc. Chem. Res. 35, 121–128 (2002).

    Article  CAS  Google Scholar 

  25. Tulevski, G. S. et al. Chemical complementarity in the contacts for nanoscale organic field-effect transistors. J. Am. Chem. Soc. 128, 1788–1789 (2006).

    Article  CAS  Google Scholar 

  26. Maitra, K. & Bhat, N. Impact of gate-to-source/drain overlap length on 80-nm CMOS circuit performance. IEEE Trans. Electron. Devices 51, 409–414 (2004).

    Article  Google Scholar 

  27. Chiang, C. S. et al. Top-gate staggered amorphous silicon thin-film transistors: Series resistance and nitride thickness effects. Jpn J. Appl. Phys. 37, 5914–5920 (1998).

    Article  CAS  Google Scholar 

  28. Shaw, J. M., Gelorme, J. D., LaBianca, N. C., Conley, W. E. & Holmes, S. J. Negative photoresists for optical lithography. IBM J. Res. Dev. 41, 81–94 (1997).

    Article  CAS  Google Scholar 

  29. Burgi, L., Richards, T. J., Friend, R. H. & Sirringhaus, H. Close look at charge carrier injection in polymer field-effect transistors. J. Appl. Phys. 94, 6129–6137 (2003).

    Article  CAS  Google Scholar 

  30. Wagner, V., Wobkenberg, P., Hoppe, A. & Seekamp, J. Megahertz operation of organic field-effect transistors based on poly(3-hexylthiopene). Appl. Phys. Lett. 89, 243515 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the EU Integrated Project NAIMO (No NMP4-CT-2004-500355). The authors thank the Dow Chemical Company and Merck for providing F8T2 and pBTTT, D.J. Stokes (FEI Company) for FIB-SEM measurement, A. Facchetti (Northwestern University) for helpful discussions, R. Peterson (Cavendish Laboratory) for inverter measurements, X. Cheng (Cavendish Laboratory) for helpful support, and M. Tello (Cavendish Laboratory) for performing the Kelvin probe work function measurements.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y.N. and H.S. conceived and designed the experiments. Y.Y.N. performed the experiments. N.Z. contributed to self-aligned inkjet printing. M.C. measured the transition frequency of transistors. Y.Y.N. and H.S. analysed the data and co-wrote the paper.

Corresponding author

Correspondence to Henning Sirringhaus.

Ethics declarations

Competing interests

H.S. and Y.Y.N. have filed a patent application on the process described in this work.

Supplementary information

Supplementary Information

Supplementary information and figures S1–S5 (PDF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noh, YY., Zhao, N., Caironi, M. et al. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nature Nanotech 2, 784–789 (2007). https://doi.org/10.1038/nnano.2007.365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing