Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures

Article metrics

Abstract

The self-organized growth of nanostructures on surfaces could offer many advantages in the development of new catalysts, electronic devices and magnetic data-storage media1,2,3,4,5. The local density of electronic states on the surface at the relevant energy scale strongly influences chemical reactivity6,7,8,9, as does the shape of the nanoparticles10. The electronic properties of surfaces also influence the growth and decay of nanostructures such as dimers, chains and superlattices of atoms or noble metal islands9,11,12,13,14,15,16. Controlling these properties on length scales shorter than the diffusion lengths of the electrons and spins (some tens of nanometres for metals) is a major goal in electronics and spintronics17. However, to date, there have been few studies of the electronic properties of self-organized nanostructures18,19,20. Here we report the self-organized growth of macroscopic superlattices of Ag or Cu nanostructures on Au vicinal surfaces, and demonstrate that the electronic properties of these systems depend on the balance between the confinement and the perturbation of the surface states caused by the steps and the nanostructures' superlattice. We also show that the local density of states can be modified in a controlled way by adjusting simple parameters such as the type of metal deposited and the degree of coverage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Homogeneous electronic properties of gold vicinal surfaces.
Figure 2: Periodic electronic patterns on a self-organized superlattice of silver nanostructures on Au(7 8 8).
Figure 3: Local view of Ag/Au nanostructures.
Figure 4: Electronic density for different growth parameters.

References

  1. 1

    Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

  2. 2

    Rosei, F. Nanostructured surfaces: challenges and frontiers in nanotechnology. J. Phys. Condens. Matter 16, S1373–S1436 (2004).

  3. 3

    Brune, H., Giovannini, M., Bromann, K. & Kern, K. Self-organised growth of nanostructure arrays on strain-relief patterns. Nature 394, 451–453 (1998).

  4. 4

    Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002).

  5. 5

    Repain, V., Berroir, J. M., Rousset, S. & Lecoeur, J. Growth of self-organised cobalt nanostructures on Au(111) vicinal surfaces. Surf. Sci. 447, L152–L156 (2000).

  6. 6

    Hoffmann, R. A chemical and theoretical way to look at bonding on surfaces. Rev. Mod. Phys. 60, 601–628 (1988).

  7. 7

    Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

  8. 8

    Aballe, L., Barinov, A., Locatelli, A., Heun, S. & Kiskinova, M. Tuning surface reactivity via electron quantum confinement. Phys. Rev. Lett. 93, 196103 (2004).

  9. 9

    Lau, K. H. & Kohn, W. Indirect long-range oscillatory interaction between adsorbed atoms. Surf. Sci. 75, 69–85 (1978).

  10. 10

    Lopez, N. & Nörskov, J. K. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 124, 11262–11263 (2002).

  11. 11

    Crain, J. N., Stiles, M. D., Stroscio, J. A. & Pierce, D. T. Electronic effects in the length distribution of atom chains. Phys. Rev. Lett. 96, 156801 (2006).

  12. 12

    Morgenstern, K., Braun, K.-F. & Rieder, K.-H. Direct imaging of Cu dimer formation, motion, and interaction with Cu atoms on Ag(111). Phys. Rev. Lett. 93, 56102 (2004).

  13. 13

    Silly, F. et al. Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea. Phys. Rev. Lett. 92, 16101 (2004).

  14. 14

    Memmel, N. & Bertel, E. Role of surface states for the epitaxial growth on metal surfaces. Phys. Rev. Lett. 75, 485–488 (1995).

  15. 15

    Fichthorn, K. A. & Merrick, M. L. Nanostructures at surfaces from substrate-mediated interactions. Phys. Rev. B 68, 41404 (2003).

  16. 16

    Morgenstern, K., Lægsgaard, E. & Besenbacher, F. Quantum size effects in adatom island decay. Phys. Rev. Lett. 94, 166104 (2005).

  17. 17

    Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Nature 403, 512–515 (2000).

  18. 18

    Losio, R. et al. Band splitting for Si(557)-Au: Is it spin-charge separation? Phys. Rev. Lett. 86, 4632–4635 (2001).

  19. 19

    Ternes, M. et al. Scanning-tunneling spectroscopy of surface-state electrons scattered by a slightly disordered two-dimensional dilute solid: Ce on Ag(111). Phys. Rev. Lett. 93, 146805 (2004).

  20. 20

    Schiller, F., Ruiz-Osés, M., Cordón, J. & Ortega, J. Scattering of surface states at step edges in nanostripe arrays. Phys. Rev. Lett. 95, 66805 (2005).

  21. 21

    Ortega, J. E. et al. One-dimensional versus two-dimensional surface states on stepped Cu(111). Phys. Rev. B 65, 165413 (2002).

  22. 22

    Mugarza, A. & Ortega, J. E. Electronic states at vicinal surfaces. J. Phys. Condens. Matter 15, S3281–S3310 (2003).

  23. 23

    Baumberger, F. et al. Step-lattice-induced band-gap opening at the Fermi level. Phys. Rev. Lett. 92, 16803 (2004).

  24. 24

    Barth, J. V., Brune, H., Ertl, G. & Behm, R. J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 42, 9307–9318 (1990).

  25. 25

    Didiot, C. et al. Reconstruction-induced multiple gaps in the weak coupling limit: The surface bands of Au(111) vicinal surfaces. Phys. Rev. B 74, R81404 (2006).

  26. 26

    Hasegawa, Y. & Avouris, P. Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. Phys. Rev. Lett. 71, 1071–1074 (1993).

  27. 27

    Li, J., Schneider, W. D., Berndt, R. & Crampin, S. Electron confinement to nanoscale Ag islands on Ag(111): A quantitative study. Phys. Rev. Lett. 80, 3332–3335 (1998).

  28. 28

    Chen, W., Madhavan, V., Jamneala, T. & Crommie, M. F. Scanning tunneling microscopy observation of an electronic superlattice at the surface of clean gold. Phys. Rev. Lett. 80, 1469–1472 (1998).

  29. 29

    Pons, S., Mallet, P. & Veuillen, J.-Y. Electron confinement in nickel and copper nanostructures on Cu(111). Phys. Rev. B 64, 193408 (2001).

  30. 30

    Hansmann, M., Pascual, J. I. Ceballos, G., Rust, H.-P. & Horn, K. Confinement and dimensionality at a stepped surface: Scanning tunneling spectroscopy study of Cu(554). Phys. Rev. B 67, 121409 (2003).

  31. 31

    Ignatiev, P. A., Stepanyuk, V. S., Klavsyuk, A. L., Hergert, W. & Bruno, P. Electronic confinement on stepped Cu(111) surfaces: Ab initio study. Phys. Rev. B 75, 155428 (2007).

  32. 32

    Ovesson, S., Bogicevic, A. & Lundqvist, B. I. Origin of compact triangular islands in metal-on-metal growth. Phys. Rev. Lett. 83, 2608–2611 (1999).

  33. 33

    Rousset, S., Repain, V., Baudot, G., Garreau, Y. & Lecoeur, J. Self-ordering of Au(111) vicinal surfaces and application to nanostructure organised growth. J. Phys. Condens. Matter 15, S3363–S3392 (2003).

  34. 34

    Cercellier, H. et al. Interplay between structural, chemical and spectroscopic properties of Ag/Au(111) epitaxial ultrathin films: A way to tune the rashba coupling. Phys. Rev. B 73, 195413 (2006).

  35. 35

    Pons, S., Mallet, P., Magaud, L. & Veuillen, J.-Y. Investigation of the Ni(111) Shockley-like surface state using confinement to artificial nanostructures. Europhys. Lett. 61, 375–381 (2003).

  36. 36

    Pennec, Y. et al. Supramolecular gratings for tuneable confinement of electrons on metal surfaces. Nature Nanotech. 2, 99–103 (2007).

  37. 37

    Clair, S., Pons, S., Brune, H., Kern, K. & Barth, J. V. Mesoscopic metallosupramolecular texturing by hierarchic assembly. Angew. Chem. Int. Edn 44, 7294–7297 (2005).

  38. 38

    Bürgi, L., Knorr, N., Brune, H., Schneider, M. A. & Kern, K. Two-dimensional electron gas at noble-metal surfaces Appl. Phys. A 75, 141–145 (2002).

Download references

Acknowledgements

The authors would like to thank L. Moreau for his technical support.

Author information

C.D. and S.P. performed the experiments. C.D., S.P. and B.K. analysed the data. S.P. wrote the resulting paper. All the authors conceived and designed the experiments, discussed the results and commented on the manuscript.

Correspondence to Stephane Pons.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Didiot, C., Pons, S., Kierren, B. et al. Nanopatterning the electronic properties of gold surfaces with self-organized superlattices of metallic nanostructures. Nature Nanotech 2, 617–621 (2007) doi:10.1038/nnano.2007.301

Download citation

Further reading