Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A virus-based single-enzyme nanoreactor

Abstract

Most enzyme studies are carried out in bulk aqueous solution, at the so-called ensemble level, but more recently studies have appeared in which enzyme activity is measured at the level of a single molecule, revealing previously unseen properties1,2,3,4. To this end, enzymes have been chemically or physically anchored to a surface, which is often disadvantageous because it may lead to denaturation. In a natural environment, enzymes are present in a confined reaction space, which inspired us to develop a generic method to carry out single-enzyme experiments in the restricted spatial environment of a virus capsid. We report here the incorporation of individual horseradish peroxidase enzymes in the inner cavity of a virus, and describe single-molecule studies on their enzymatic behaviour. These show that the virus capsid is permeable for substrate and product and that this permeability can be altered by changing pH.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of CCMV and the empty CCMV capsid.
Figure 2: Inclusion of HRP in the virus capsid.
Figure 3: Enzyme activity in the presence of single capsids.
Figure 4: Single-capsid experiments.

Similar content being viewed by others

References

  1. Lu, H. P., Xun, L. & Xie, S. Single-molecule enzymatic dynamics. Science 282, 1877–1882 (1998).

    Article  CAS  Google Scholar 

  2. Min, W. et al. Fluctuating enzymes: lessons from single-molecule studies. Acc. Chem. Res. 38, 923–931 (2005).

    Article  CAS  Google Scholar 

  3. Engelkamp, H. et al. Do enzymes sleep and work? Chem. Commun. 935–940 (2006).

  4. Flomenbom, O. et al. Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proc. Natl Acad. Sci. USA 102, 2368–2372 (2005).

    Article  CAS  Google Scholar 

  5. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    Article  CAS  Google Scholar 

  6. Douglas, T. et al. Synthesis and structure of an iron(III) sulfide–ferritin bioinorganic nanocomposite. Science 269, 54–57 (1995).

    Article  CAS  Google Scholar 

  7. Meldrum, F. C., Heywood, B. R. & Mann, S. Magnetoferritin—in vitro synthesis of a novel magnetic protein. Science 257, 522–523 (1992).

    Article  CAS  Google Scholar 

  8. Ueno, T. et al. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew. Chem. Int. Edn 43, 2527–2530 (2004).

    Article  CAS  Google Scholar 

  9. Seebeck, F. P., Woycechowsky, K. J., Zhuang, W., Rabe, J. P. & Hilvert, D. A simple tagging system for protein encapsulation. J. Am. Chem. Soc. 128, 4516–4517 (2006).

    Article  CAS  Google Scholar 

  10. Varpness, Z., Peters, J. W., Young, M. & Douglas, T. Biomimetic synthesis of an H2 catalyst using a protein cage architecture. Nano Lett. 5, 2306–2309 (2005).

    Article  CAS  Google Scholar 

  11. Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    Article  CAS  Google Scholar 

  12. Douglas, T. et al. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater. 14, 415–418 (2002).

    Article  CAS  Google Scholar 

  13. Douglas, T. & Young, M. Viruses: Making friends with old foes. Science 312, 873–875 (2006).

    Article  CAS  Google Scholar 

  14. Flynn, C. E., Lee, S.-W., Peelle, B. R. & Belcher, A. M. Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51, 5867–5880 (2003).

    Article  CAS  Google Scholar 

  15. Shenton, W., Douglas, T., Young, M., Stubbs, G. & Mann, S. Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 11, 253–256 (1999).

    Article  CAS  Google Scholar 

  16. Dujardin, E., Peet, C., Stubbs, G., Culver, J. N. & Mann, S. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett. 3, 413–417 (2003).

    Article  CAS  Google Scholar 

  17. Mao, C. B. et al. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 303, 213–217 (2004).

    Article  CAS  Google Scholar 

  18. Carette, N. et al. A virus-based biocatalyst. Nature Nanotech. 2, 226–229 (2007).

    Article  CAS  Google Scholar 

  19. Arora, P. S. & Kirshenbaum, K. Nano-tailoring: Stitching alterations on viral coats. Chem. Biol. 11, 418–420 (2004).

    Article  CAS  Google Scholar 

  20. Wang, Q. et al. Bioconjugation by copper(I)-catalyzed azide-alkyne 3 + 2 cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003).

    Article  CAS  Google Scholar 

  21. Hooker, J. M., Kovacs, E. W. & Francis, M. B. Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 126, 3718–3719 (2004).

    Article  CAS  Google Scholar 

  22. Speir, J. A., Munshi, S., Wang, G. J., Baker, T. S. & Johnson, J. E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryoelectron microscopy. Structure 3, 63–78 (1995).

    Article  CAS  Google Scholar 

  23. Johnson, J. E. & Speir, J. A. Quasi-equivalent viruses: A paradigm for protein assemblies. J. Mol. Biol. 269, 665–675 (1997).

    Article  CAS  Google Scholar 

  24. Verduin, B. J. M. Degradation of cowpea chlorotic mottle virus ribonucleic acid in situ. J. Gen. Virol. 39, 131–147 (1978).

    Article  CAS  Google Scholar 

  25. Verduin, B. J. M. The preparation of CCMV-protein in connection with its association into a spherical-particle. FEBS Lett. 45, 50–54 (1974).

    Article  CAS  Google Scholar 

  26. Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

    Article  CAS  Google Scholar 

  27. Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl Acad. Sci. USA 102, 9511–9516 (2005).

    Article  CAS  Google Scholar 

  28. Edman, L., Foldes-Papp, Z., Wennmalm, S. & Rigler, R. The fluctuating enzyme: a single molecule approach. Chem. Phys. 247, 11–22 (1999).

    Article  CAS  Google Scholar 

  29. Krichevsky, O. & Bonnet, G. Fluorescence correlation spectroscopy: the technique and its applications. Rep. Prog. Phys. 65, 251–297 (2002).

    Article  CAS  Google Scholar 

  30. Kinjo, M. & Rigler, R. Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy. Nucleic Acids Res. 23, 1795–1799 (1995).

    Article  CAS  Google Scholar 

  31. Wennmalm, S., Edman, L. & Rigler, R. Conformational fluctuations in single DNA molecules. Proc. Natl Acad. Sci. USA 94, 10641–10646 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO-CW) through a TOP grant to R.J.M.N. and Veni & Vidi Innovative Research Grants to J.J.L.M.C., and by the Royal Netherlands' Academy for Arts and Sciences (R.J.M.N.). The protein Dronpa was a generous gift from J. Hofkens, University of Leuven (Belgium).

Author information

Authors and Affiliations

Authors

Contributions

M.C., H.E., J.C. and R.N conceived and designed the experiments; M.C. carried out the capsid isolation and encapsulation experiments and M.C., V.C. and H.E. performed the fluorescence spectroscopy. B.V. contributed to the capsid isolation and encapsulation studies. H.E. analysed the fluorescence data. A.R., P.C., J.M. and R.N. facilitated the fluorescence microscope and N.S. provided the cryo-TEM data.M.C., H.E., J.C and R.N co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Hans Engelkamp or Jeroen J. L. M. Cornelissen.

Supplementary information

Supplementary Information

Supplementary figures S1–S7 (PDF 3899 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comellas-Aragonès, M., Engelkamp, H., Claessen, V. et al. A virus-based single-enzyme nanoreactor. Nature Nanotech 2, 635–639 (2007). https://doi.org/10.1038/nnano.2007.299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing