Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment

Abstract

We control the chain conformation of a semiconducting polymer by encapsulating it within the aligned nanopores of a silica host. The confinement leads to polarized, low-threshold amplified spontaneous emission from the polymer chains. The polymer enters the porous silica film from only one face and the filling of the pores is therefore graded. As a result, the profile of the index of refraction in the film is also graded, in the direction normal to the pores, so that the composite film forms a low-loss, graded-index waveguide. The aligned polymer chains plus naturally formed waveguide are ideally configured for optical gain, with a threshold for amplified spontaneous emission that is twenty times lower than in comparable unoriented polymer films. Moreover, the optimal conditions for ASE are met in only one spatial orientation and with one polarization. The results show that nanometre-scale control of semiconducting polymer chain orientation and position leads to novel and desirable optical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Composite films of aligned silica nanopores containing the semiconducting polymer poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV).
Figure 2: Intensity-dependent emission spectra from an MEH-PPV/aligned mesoporous silica composite film.
Figure 3: The threshold for ASE depends on both the excitation polarization and the nanoscale alignment of the polymer.
Figure 4: Electric field intensity distribution calculations.

Similar content being viewed by others

References

  1. Schwartz, B. J. Conjugated polymers as molecular materials: How chain conformation and morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 54, 141–172 (2003).

    Article  CAS  Google Scholar 

  2. Miller, E. K., Yoshida, D., Yang, C. Y. & Heeger, A. J. Polarized ultraviolet absorption of highly oriented poly(2-methoxy,5-(2′-ethyl)-hexyloxy paraphenylene vinylene). Phys. Rev. B 59, 4661–4664 (1999).

    Article  CAS  Google Scholar 

  3. Wu, J., Gross, A. F. & Tolbert, S. H. Host–guest chemistry using an oriented mesoporous host: alignment and isolation of a semiconducting polymer in the nanopores of an ordered silica matrix. J. Phys. Chem. B 103, 2374–2378 (1999).

    Article  CAS  Google Scholar 

  4. Hide, F. et al. Semiconducting polymers: a new class of solid-state lasing materials. Science 273, 1833–1836 (1996).

    Article  CAS  Google Scholar 

  5. Yanagisawa, T., Shimizu, T., Kuroda, K. & Kato, C. The preparation of alkyltrimethylammonium–kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn 63, 988–992 (1990).

    Article  CAS  Google Scholar 

  6. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  7. Yang, H., Kuperman, A., Coombs, N., Mamiche-Afara, S. & Ozin, G. A. Synthesis of oriented films of mesoporous silica on mica. Nature 379, 703–705 (1996).

    Article  CAS  Google Scholar 

  8. Lu, Y. F. et al. Continuous formation of supported cubic and hexagonal mesoporous thin films by sol–gel dip-coating. Nature 389, 364–368 (1997).

    Article  CAS  Google Scholar 

  9. Miyata, H. & Kuroda, K. Formation of a continuous mesoporous silica film with fully aligned mesochannels on a glass substrate. Chem. Mater. 12, 49–54 (2000).

    Article  CAS  Google Scholar 

  10. Miyata, H., Kawashima, Y., Itoh, M. & Watanabe, M. Preparation of a mesoporous silica film with a strictly aligned porous structure through a sol–gel process. Chem. Mater. 17, 5323–5327 (2005).

    Article  CAS  Google Scholar 

  11. Molenkamp, W., Miyata, H. & Tolbert, S. H. Highly-polarized luminescence from optical-quality films of semiconducting polymers aligned within oriented mesoporous silica. J. Am. Chem. Soc. 126, 4476–4477 (2004).

    Article  CAS  Google Scholar 

  12. Nguyen, T.-Q., Wu, J., Doan, V., Schwartz, B. J. & Tolbert, S. H. Control of energy transfer in oriented conjugated polymer/mesoporous silica composites. Science 288, 652–656 (2000).

    Article  CAS  Google Scholar 

  13. Cadby, A. J. & Tolbert, S. H. Controlling optical properties and interchain interactions in semiconducting polymer by encapsulation in periodic nanoporous silicas with different pore sizes. J. Phys. Chem. B 109, 17879–17886 (2005).

    Article  CAS  Google Scholar 

  14. Wan, Y., Yang, H. F. & Zhao, D. Y. Host-guest chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acct. Chem. Res. 39, 423–432 (2006).

    Article  CAS  Google Scholar 

  15. Huo, Q., Margolese, D. I. & Stucky, G. D. Surfactant control of phases in the synthesis of mesoporous silica-based materials. Chem. Mater. 8, 1147–1160 (1996).

    Article  CAS  Google Scholar 

  16. Nguyen, T.-Q., Wu, J., Tolbert, S. H. & Schwartz, B. J. Control of energy transport in conjugated polymers using an oriented mesoporous silica matrix. Adv. Mater. 13, 609–611 (2001).

    Article  CAS  Google Scholar 

  17. Tessler, N., Denton, G. J. & Friend, R. H. Lasing from conjugated-polymer microcavities. Nature 382, 695–697 (1996).

    Article  CAS  Google Scholar 

  18. McGehee, M. D. et al. Semiconducting polymer distributed feedback lasers. Appl. Phys. Lett. 72, 1536–1538 (1998).

    Article  CAS  Google Scholar 

  19. Wudl, F. et al. Polymers and an unusual molecular crystal with nonlinear optical properties. ACS Symp. Ser. 455, 683–686 (1991).

    Article  CAS  Google Scholar 

  20. Nguyen, T.-Q., Martini, I. B., Liu, J. & Schwartz, B. J. Controlling interchain interactions in conjugated polymers: The effects of chain morphology on exciton–exciton Annihilation and aggregation in MEH-PPV films. J. Phys. Chem. B 104, 237–255 (2000).

    Article  CAS  Google Scholar 

  21. McGehee, M. D. et al. Amplified spontaneous emission from photopumped films of a conjugated polymer. Phys. Rev. B 58, 7035–7039 (1998).

    Article  CAS  Google Scholar 

  22. Wang, L. & Huang, N. Index profiles: TE mode solutions. IEEE J. Quant. Electron. 35, 1351–1353 (1999).

    Article  CAS  Google Scholar 

  23. Schaller, R. D. et al. Nanoscopic interchain aggregate domain formation in conjugated polymer films studied by third harmonic generation (THG) near-field scanning optical microscopy (NSOM). J. Chem. Phys. 117, 6688–6698 (2002).

    Article  CAS  Google Scholar 

  24. Schaller, R. D. et al. The nature of interchain excitations in conjugated polymers: Spatially-varying interfacial solvatochromism of annealed MEH-PPV films studied by near-field scanning optical microscopy (NSOM). J. Phys. Chem. B 106, 9496–9506 (2002).

    Article  CAS  Google Scholar 

  25. Díaz-García, M. A. et al. Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials. Synth. Met. 84, 455–462 (1997).

    Article  Google Scholar 

  26. Heliotis, G. et al. Investigation of amplified spontaneous emission in oriented films of a liquid crystalline conjugated polymer. Synth. Met. 139, 727–730 (2003).

    Article  CAS  Google Scholar 

  27. Martini, I. B., Smith, A. D. & Schwartz, B. J. Evidence for the direct production of interchain species in conjugated polymer films: The ultrafast stimulated emission and fluorescence dynamics of MEH-PPV. Phys. Rev. B 69, 035204 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Canon (S.H.T. and H.M.), by the Office of Naval Research under grant N00014-04-1-0410 (S.H.T. and B.J.S.), and by the National Science Foundation under grants DMR-0305254 (BJS) and CHE-0527015 (B.J.S. and S.H.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah H. Tolbert or Benjamin J. Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and supplementary figures 1-2 (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martini, I., Craig, I., Molenkamp, W. et al. Controlling optical gain in semiconducting polymers with nanoscale chain positioning and alignment. Nature Nanotech 2, 647–652 (2007). https://doi.org/10.1038/nnano.2007.294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing