Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Solid-state nanopores

Abstract

The passage of individual molecules through nanosized pores in membranes is central to many processes in biology. Previously, experiments have been restricted to naturally occurring nanopores, but advances in technology now allow artificial solid-state nanopores to be fabricated in insulating membranes. By monitoring ion currents and forces as molecules pass through a solid-state nanopore, it is possible to investigate a wide range of phenomena involving DNA, RNA and proteins. The solid-state nanopore proves to be a surprisingly versatile new single-molecule tool for biophysics and biotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA translocation through a biological nanopore.
Figure 3: Translocation of dsDNA through a solid-state nanopore.
Figure 2: Fabrication of solid-state nanopores.
Figure 4: New developments.

Similar content being viewed by others

References

  1. Sakmann, B. & Neher, E. (eds). Single Channel Recording 2nd edn (Plenum, New York, 2005).

    Google Scholar 

  2. Deamer, D. W. & Akeson, M. Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol. 18, 131–180 (2000).

    Article  Google Scholar 

  3. Kasianowicz, J. et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  Google Scholar 

  4. Song, L. et al. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274, 1859–66 (1996).

    Article  CAS  Google Scholar 

  5. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  CAS  Google Scholar 

  6. Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. & Deamer, D. W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    Article  CAS  Google Scholar 

  7. Henrickson, S. E. et al. Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 85, 3057–3060 (2000).

    Article  CAS  Google Scholar 

  8. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single oligonucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    Article  CAS  Google Scholar 

  9. Mathe, J. et al. Orientation discrimination of single-stranded DNA inside the -hemolysin membrane channel. Proc. Natl Acad. Sci. USA 102, 12377–12382 (2005).

    Article  CAS  Google Scholar 

  10. Bayley, H. et al. Engineered Nanopores in NanoBiotechnology (eds Niemeyer, C. M. & Mirkin, C. A.) (Wiley-VCH, Weinheim, 2005).

    Google Scholar 

  11. Gu, L. Q. et al. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    Article  CAS  Google Scholar 

  12. Movileanu, L. et al. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nature Biotechnol. 18, 1091–1095 (2000).

    Article  CAS  Google Scholar 

  13. Howorka, S., Cheley, S. & Bayley, H. Sequence-specific detection of individual DNA strands using engineered nanopores. Nature Biotechnol. 19, 636–639 (2001).

    Article  CAS  Google Scholar 

  14. Vercoutere, W. et al. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nature Biotechnol. 19, 248–252 (2001).

    Article  CAS  Google Scholar 

  15. Mathe, J. et al. Nanopore unzipping of individual DNA hairpin molecules. Biophys. J. 87, 3205–3212 (2004).

    Article  CAS  Google Scholar 

  16. Sauer-Budge, A. F. et al. Unzipping kinetics of double-stranded DNA in a nanopore. Phys. Rev. Lett. 90, 238101 (2003).

    Article  Google Scholar 

  17. Halverson, K. M. et al. Anthrax biosensor, protective antigen ion channel asymmetric blockade, J. Biol. Chem. 280, 34056–34062 (2005).

    Article  CAS  Google Scholar 

  18. Schmidt, C., Mayer, M. & Vogel, H. A chip-based biosensor for the functional analysis of single ion channels. Angew. Chem. Int. Edn 39, 3137–3140 (2000).

    Article  CAS  Google Scholar 

  19. Fertig, N. et al. Microstructured glass chip for ion-channel electrophysiology. Phys. Rev. E 64, 040901 (2001).

    Article  CAS  Google Scholar 

  20. Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

    Article  CAS  Google Scholar 

  21. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  22. Storm, A. J. et al. Fabrication of solid-state nanopores with single-nanometre precision. Nature Mater. 2, 537–540 (2003).

    Article  CAS  Google Scholar 

  23. Storm, A. J. et al. Electron-beam-induced deformations of SiO2 nanostructures. J. Appl. Phys. 98, 014307 (2005).

    Article  Google Scholar 

  24. Heng J. B. et al. Sizing DNA using a nanometer-diameter pore. Biophys. J. 87, 2905–2911 (2004).

    Article  CAS  Google Scholar 

  25. Krapf, D. et al. Fabrication and characterization of nanopore-based electrodes down to 2 nm. Nano Lett. 6, 105–109 (2006).

    Article  CAS  Google Scholar 

  26. Zandbergen, H. W. et al. Sculpting nano-electrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles. Nano Lett. 5, 549–553 (2005).

    Article  CAS  Google Scholar 

  27. Lemay, S. G. et al. Lithographically fabricated nanopore-based electrodes for electrochemistry. Anal. Chem. 77, 1911–1915 (2005).

    Article  CAS  Google Scholar 

  28. Gracheva, M. E. et al. Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology 17, 622–633 (2006).

    Article  CAS  Google Scholar 

  29. Smeets, R. M. M. et al. Salt-dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006).

    Article  CAS  Google Scholar 

  30. Siwy, Z. et al. Rectification and voltage gating of ion currents in a nanofabricated pore. Europhys. Lett. 60, 349–355 (2002).

    Article  CAS  Google Scholar 

  31. Siwy, Z. et al. Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 94, 048102 (2005).

    Article  CAS  Google Scholar 

  32. Ho, C. et al. Electrolytic transport through a synthetic nanometer-diameter pore. Proc. Natl Acad. Sci. USA 102, 10445–10450 (2005).

    Article  CAS  Google Scholar 

  33. Bezrukov, S. M. & Winterhalter, M. Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel. Phys. Rev. Lett. 85, 202–205 (2000).

    Article  CAS  Google Scholar 

  34. Siwy, Z. & Fulinski, A. Origin of 1/ fα noise in membrane channel currents. Phys. Rev. Lett. 89, 158101 (2002).

    Article  CAS  Google Scholar 

  35. Smeets, R. M. M. et al. Nanobubbles in solid-state nanopores Phys. Rev. Lett., 97, 088101 (2006).

    Article  CAS  Google Scholar 

  36. Attard, P. Nanobubbles and the hydrophobic attraction. Adv. Colloid Interface Sci. 104, 75 (2003).

    Article  CAS  Google Scholar 

  37. Storm, A. J. et al. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E 71, 051903 (2005).

    Article  CAS  Google Scholar 

  38. Li, J. et al. DNA molecules and configurations in a solid-state nanopore microscope. Nature Mater. 2, 611–615 (2003).

    Article  CAS  Google Scholar 

  39. Storm, A. J. et al. Fast DNA translocation through a solid-state nanopore. Nano Lett. 5, 1193–1197 (2005).

    Article  CAS  Google Scholar 

  40. Chang, H. et al. DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels Nano Lett. 4, 1551–1556 (2004).

    Article  CAS  Google Scholar 

  41. Fologea, D. et al. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 5, 1734–1737 (2005).

    Article  CAS  Google Scholar 

  42. Fologea, D. et al. Detecting single stranded DNA with a solid state nanopore, Nano Lett. 5, 1905–1909 (2005).

    Article  CAS  Google Scholar 

  43. Heng, J. B. et al. The electromechanics of DNA in a synthetic nanopore. Biophys. J. 90, 1098–1106 (2006).

    Article  CAS  Google Scholar 

  44. Aksimentiev, A. et al. Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys. J. 87, 2086–2097 (2004).

    Article  CAS  Google Scholar 

  45. Heng, J. B. et al. Stretching DNA using the electric field in a synthetic nanopore. Nano Lett. 5, 1883–1888 (2005).

    Article  CAS  Google Scholar 

  46. Muthukumar, M. Polymer escape through a nanopore. J. Chem. Phys. 118, 5174–5184 (2003).

    Article  CAS  Google Scholar 

  47. Keyser, U. F., van der Does, J., Dekker, C. & Dekker, N. H. Optical tweezers for force measurements on DNA in nanopores. Rev. Sci. Instr. 77, 105105 (2006).

    Article  Google Scholar 

  48. Keyser, U. F. et al. Direct force measurements on DNA in a solid-state nanopore. Nature Phys. 2, 473–477 (2006).

    Article  CAS  Google Scholar 

  49. Manning, G. S. Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969).

    Article  CAS  Google Scholar 

  50. Keyser, U. F. et al. Nanopore tomography of an objective focus. Nano Lett. 5, 2253 (2005).

    Article  CAS  Google Scholar 

  51. Service, R. The race for $1000 genome. Science 311, 1544–1546 (2006).

    Article  CAS  Google Scholar 

  52. Lagerqvist, J., Zwolak, M. & Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006).

    Article  CAS  Google Scholar 

  53. Zhang X. -G. et al. First-principles transversal DNA conductance deconstructed. Biophys. J. 91, L04–L06 (2006).

    Article  Google Scholar 

  54. Craighead, H. G. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006).

    Article  CAS  Google Scholar 

  55. Gerland, U., Bundschuh, R. & Hwa, T. Translocation of structured polynucleotides through nanopores. Phys. Biol. 1, 19–26 (2004).

    Article  CAS  Google Scholar 

  56. Bundschuh, R. & Gerland, U. Coupled dynamics of RNA folding and nanopore translocation. Phys. Rev. Lett. 95, 208104 (2005).

    Article  Google Scholar 

  57. Kafri, Y., Lubensky, D. K. & Nelson, D. R. Dynamics of molecular motors and polymer translocation with sequence heterogeneity. Biophys. J. 86, 3373–3391 (2004).

    Article  CAS  Google Scholar 

  58. Siwy, Z. et al. Protein biosensors based on biofunctionalized conical gold nanotubes. J. Am. Chem. Soc. 127, 5000–5001 (2005).

    Article  CAS  Google Scholar 

  59. Han, A. et al. Sensing protein molecules using nanofabricated pores. Appl. Phys. Lett. 88, 093901 (2006).

    Article  Google Scholar 

  60. Krapf, D. et al. Experimental observation of nonlinear ionic transport at the nanometer scale. Nano Lett. 6, 2531–2535 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I have benefited from interactions with all the members from our Delft team in the past few years, Dennis M. van den Broek, Giorgia M. S. Dato, Nynke H. Dekker, Jelle van der Does, Stijn Dorp, Hendrik A. Heering, Michiel van den Hout, Ulrich F. Keyser, Bernard M. Koeleman, Diego Krapf, Serge G. Lemay, X. Sean Ling, Ralph M. M. Smeets, Derek Stein, Arnold J. Storm, Meng-Yue Wu, and with collaborators Jianghua Chen, Cees Storm, Jean-François Joanny, and Henny Zandbergen. The nanopore work at Delft is financially supported by FOM, NanoNed and NWO.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekker, C. Solid-state nanopores. Nature Nanotech 2, 209–215 (2007). https://doi.org/10.1038/nnano.2007.27

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing