Synergetic nanowire growth

Article metrics

Abstract

Interest in nanowires continues to grow because they hold the promise of monolithic integration of high-performance semiconductors with new functionality1,2,3,4,5 into existing silicon technology6,7,8. Most nanowires are grown using vapour–liquid–solid growth9, and despite many years of study this growth mechanism remains under lively debate. In particular, the role of the metal particle is unclear10,11,12. For instance, contradictory results have been reported on the effect of particle size on nanowire growth rate13,14,15,16,17,18. Additionally, nanowire growth from a patterned array of catalysts19,20 has shown that small wire-to-wire spacing leads to materials competition and a reduction in growth rates21. Here, we report on a counterintuitive synergetic effect resulting in an increase of the growth rate for decreasing wire-to-wire distance. We show that the growth rate is proportional to the catalyst area fraction. The effect has its origin in the catalytic decomposition of precursors and is applicable to a variety of nanowire materials and growth techniques.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SEM images of GaP nanowire patterns.
Figure 2: Cross-sectional SEM image of nanowires grown from a pattern of gold catalysts with different sizes.
Figure 3: Nanowire growth dependent on catalyst surface fraction.
Figure 4: Schematic nanowire growth model.

References

  1. 1

    Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).

  2. 2

    Zheng, G. F., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).

  3. 3

    Borgstrom, M. T., Zwiller, V., Muller, E. & Imamoglu, A. Optically bright quantum dots in single nanowires. Nano Lett. 5, 1439–1443 (2005).

  4. 4

    van Dam, J. A., Nazarov, Y. V., Bakkers, E. P. A. M., De Franceschi, S. & Kouwenhoven, L. P. Supercurrent reversal in quantum dots. Nature 442, 667–670 (2006).

  5. 5

    Minot, E. D. et al. Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007).

  6. 6

    Kamins, T. I., Li, X. & Williams, R. S. Growth and structure of chemically vapor deposited Ge nanowires on Si substrates. Nano Lett. 4, 503–506 (2004).

  7. 7

    Martensson, T. et al. Epitaxial III–V nanowires on silicon. Nano Lett. 4, 1987–1990 (2004).

  8. 8

    Bakkers, E. P. et al. Epitaxial growth of InP nanowires on germanium. Nature Mater. 3, 769–773 (2004).

  9. 9

    Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

  10. 10

    Persson, A. I. et al. Solid-phase diffusion mechanism for GaAs nanowire growth. Nature Mater. 3, 677–681 (2004).

  11. 11

    Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006).

  12. 12

    Verheijen, M. A., Immink, G., deSmet, T., Borgstrom, M. T. & Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP–GaAs nanowires. J. Am. Chem. Soc. 128, 1353–1359 (2006).

  13. 13

    Givargizov, E. I. Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975).

  14. 14

    Schubert, L. et al. Silicon nanowhiskers grown on 〈111〉 Si substrates by molecular-beam epitaxy. Appl. Phys. Lett. 84, 4968–4970 (2004).

  15. 15

    Dubrovskii, V. G. & Sibirev, N. V. Growth rate of a crystal facet of arbitrary size and growth kinetics of vertical nanowires. Phys. Rev. E 70, 031604 (2004).

  16. 16

    Kikkawa, J., Ohno, Y. & Takeda, S. Growth rate of silicon nanowires. Appl. Phys. Lett. 86, 123109 (2005).

  17. 17

    Johansson, J., Svensson, C. P. T., Martensson, T., Samuelson, L. & Seifert, W. Mass transport model for semiconductor nanowire growth. J. Phys. Chem. B 109, 13567–13571 (2005).

  18. 18

    Kodambaka, S., Tersoff, J., Reuter, M. C. & Ross, F. M. Diameter-independent kinetics in the vapor–liquid–solid growth of Si nanowires. Phys. Rev. Lett. 96, 096105 (2006).

  19. 19

    Haraguchi, K. et al. Self-organized fabrication of planar GaAs nanowhisker arrays. Appl. Phys. Lett. 69, 386–387 (1996).

  20. 20

    Martensson, T., Borgstrom, M., Seifert, W., Ohlsson, B. J. & Samuelson, L. Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth. Nanotechnology 14, 1255–1258 (2003).

  21. 21

    Jensen, L. E. et al. Role of surface diffusion in chemical beam epitaxy of InAs nanowires. Nano Lett. 4, 1961–1964 (2004).

  22. 22

    Chen, J., Klaumunzer, S., Lux-Steiner, M. C. & Konenkamp, R. Vertical nanowire transistors with low leakage current. Appl. Phys. Lett. 85, 1401–1403 (2004).

  23. 23

    Ng, H. T. et al. Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett. 4, 1247–1252 (2004).

  24. 24

    Denbaars, S. P., Maa, B. Y., Dapkus, P. D., Danner, A. D. & Lee, H. C. Homogeneous and heterogeneous thermal-decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD. J. Cryst. Growth 77, 188–193 (1986).

  25. 25

    Nishizawa, J., Sakuraba, H. & Kurabayashi, T. Surface reaction of trimethylgallium on GaAs. J. Vac. Sci. Technol. B 14, 136–146 (1996).

  26. 26

    Shogen, S., Matsumi, Y., Kawasaki, M., Toyoshima, I. & Okabe, H. Pyrolytic and photolytic dissociation of trimethylgallium on Si and Au substrates. J. Appl. Phys. 70, 462–468 (1991).

  27. 27

    Seifert, W. et al. Growth of one-dimensional nanostructures in MOVPE. J. Cryst. Growth 272, 211–220 (2004).

  28. 28

    Persson, A. I., Froberg, L. E., Jeppesen, S., Bjork, M. T. & Samuelson, L. Surface diffusion effects on growth of nanowires by chemical beam epitaxy. J. Appl. Phys. 101, 034313 (2007).

Download references

Acknowledgements

The authors thank F. Holthuysen for SEM imaging, C. Latta for programming the SEM image analysis tool and R. Bolt for graphical assistance. We acknowledge M. A. Verheijen, L.-F. Feiner and R. Balkenende for useful discussions. This work was supported by the European Marie Curie program, the FP6 NODE (015783) project, Dutch Institute of Metal Research (NIMR, MC3.05243) and the ministry of economic affairs of the Netherlands (NanoNed).

Author information

M.T.B. and E.P.A.M.B. conceived and designed the experiments and co-wrote the paper. B.K. fabricated the e-beam patterns and G.I. is responsible for the MOVPE growth. M.T.B., E.P.A.M.B. and R.A. analysed the data.

Correspondence to Erik P.A.M. Bakkers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1–S4 (PDF 392 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borgström, M., Immink, G., Ketelaars, B. et al. Synergetic nanowire growth. Nature Nanotech 2, 541–544 (2007) doi:10.1038/nnano.2007.263

Download citation

Further reading