Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoparticle printing with single-particle resolution

Abstract

Bulk syntheses of colloids efficiently produce nanoparticles with unique and useful properties. Their integration onto surfaces is a prerequisite for exploiting these properties in practice. Ideally, the integration would be compatible with a variety of surfaces and particles, while also enabling the fabrication of large areas and arbitrarily high-accuracy patterns. Whereas printing routinely meets these demands at larger length scales, we have developed a novel printing process that enables positioning of sub-100-nm particles individually with high placement accuracy. A colloidal suspension is inked directly onto printing plates, whose wetting properties and geometry ensure that the nanoparticles only fill predefined topographical features. The dry particle assembly is subsequently printed from the plate onto plain substrates through tailored adhesion. We demonstrate that the process can create a variety of particle arrangements including lines, arrays and bitmaps, while preserving the catalytic and optical activity of the individual nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From traditional gravure printing to high-resolution particle printing.
Figure 2: Particles arranged on printing plates after inking.
Figure 3: The inking process that arranges the particles.
Figure 4: Particle structures printed on unpatterned Si substrates.
Figure 5: Demonstration of the activity of printed particles.

Similar content being viewed by others

References

  1. Fendler, J. H. & Meldrum, F. C. The colloid chemical approach to nanostructured materials. Adv. Mater. 7, 607–632 (1995).

    Article  CAS  Google Scholar 

  2. Klein, D. L. et al. An approach to electrical studies of single nanocrystals. Appl. Phys. Lett. 68, 2574–2576 (1996).

    Article  CAS  Google Scholar 

  3. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  CAS  Google Scholar 

  4. Englebienne, P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 123, 1599–1603 (1998).

    Article  CAS  Google Scholar 

  5. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  6. Lee, T. H. & Dickson, R. M. Discrete two-terminal single nanocluster quantum optoelectronic logic operations at room temperature. Proc. Natl Acad. Sci. USA 100, 3043–3046 (2003).

    Article  CAS  Google Scholar 

  7. Parviz, B. A., Ryan, D. & Whitesides, G. M. Using self-assembly for the fabrication of nano-scale electronic and photonic devices. IEEE Trans. Adv. Packag. 26, 233–241 (2003).

    Article  CAS  Google Scholar 

  8. Ahn, J. H. et al. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 314, 1754–1757 (2006).

    Article  CAS  Google Scholar 

  9. Michel, B. et al. Printing meets lithography: Soft approaches to high-resolution printing. IBM J. Res. Dev. 45, 697–719 (2001).

    Article  CAS  Google Scholar 

  10. Bernard, A. et al. Microcontact printing of proteins. Adv. Mater. 12, 1067–1070 (2000).

    Article  CAS  Google Scholar 

  11. Hidber, P. C. et al. Microcontact printing of palladium colloids: Micron-scale patterning by electroless deposition of copper. Langmuir 12, 1375–1380 (1996).

    Article  CAS  Google Scholar 

  12. Larsen, N. B. et al. Order in microcontact printed self-assembled monolayers. J. Am. Chem. Soc. 119, 3017–3026 (1997).

    Article  CAS  Google Scholar 

  13. Liao, J. et al. Reversible formation of molecular junctions in 2D nanoparticle arrays. Adv. Mater. 18, 2444–2447 (2006).

    Article  CAS  Google Scholar 

  14. Fludd, R. & de Bry, J. T. Utriusque cosmi maioris scilicet et minoris metaphysica, physica atque technica historia, in duo volumina secundum cosmi differentiam diuisa. (Aere J. T. de Bry, typis H. Galleri, Oppenhemii, 1617).

  15. Cui, Y. et al. Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett. 4, 1093–1098 (2004).

    Article  CAS  Google Scholar 

  16. Malaquin, L. et al. Controlled particle placement through convective and capillary assembly. Langmuir (in the press).

  17. Peppin, S. S. L. & Elliott, J. A. W. Non-equilibrium thermodynamics of concentration polarization. Adv. Colloid Interface Sci. 92, 1–72 (2001).

    Article  CAS  Google Scholar 

  18. Schmid, H. & Michel, B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049 (2000).

    Article  CAS  Google Scholar 

  19. Geissler, M. et al. Fabrication of metal nanowires using microcontact printing. Langmuir 19, 6301–6311 (2003).

    Article  CAS  Google Scholar 

  20. Kraus, T. et al. Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration of particles. Adv. Mater. 17, 2438–2442 (2005).

    Article  CAS  Google Scholar 

  21. Rimai, D. S., Ezenyilimba, M. C. & Quesnel, D. J. Effects of electrostatic and van der Waals interactions on the adhesion of spherical 7 µm particles. J. Adhesion 81, 245–269 (2005).

    Article  CAS  Google Scholar 

  22. Farshchi-Tabrizi, M. et al. On the adhesion between fine particles and nanocontacts: An atomic force microscope study. Langmuir 22, 2171–2184 (2006).

    Article  CAS  Google Scholar 

  23. Kendall, K. Molecular Adhesion and its Applications: The Sticky Universe vol. xix (Kluwer Academic/Plenum Publishers, New York, 2001).

  24. Arzt, E., Gorb, S. & Spolenak, R. From micro to nano contacts in biological attachment devices. Proc. Natl Acad. Soc. USA 100, 10603–10606 (2003).

    Article  CAS  Google Scholar 

  25. Wagner, R. S. & Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006).

    Article  CAS  Google Scholar 

  27. Hutter, E. & Fendler, J. H. Exploitation of localized surface plasmon resonance. Adv. Mater. 16, 1685–1706 (2004).

    Article  CAS  Google Scholar 

  28. Freeman, R. G. et al. Self-assembled metal colloid monolayers—an approach to sers substrates. Science 267, 1629–1632 (1995).

    Article  CAS  Google Scholar 

  29. Storhoff, J. J. et al. What controls the optical properties of DNA-linked gold nanoparticle assemblies? J. Am. Chem. Soc. 122, 4640–4650 (2000).

    Article  CAS  Google Scholar 

  30. Krug, J. T. et al. Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J. Am. Chem. Soc. 121, 9208–9214 (1999).

    Article  CAS  Google Scholar 

  31. Kipphan, H. Handbook of Print Media (Springer, Berlin, 2004).

    Google Scholar 

  32. Kim, H. et al. Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nature Nanotech. 1, 117–121 (2006).

    Article  CAS  Google Scholar 

  33. Sleytr, U. B. et al. Crystalline bacterial cell surface layers (S layers): From supramolecular cell structure to biomimetics and nanotechnology. Angew. Chem. Int. Edn 38, 1035–1054 (1999).

    Article  Google Scholar 

  34. Brown, K. R., Walter, D. G. & Natan, M. J. Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape. Chem. Mater. 12, 306–313 (2000).

    Article  CAS  Google Scholar 

  35. Frens, G. Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nature Phys. Sci. 241, 20–22 (1973).

    Article  CAS  Google Scholar 

  36. Im, S. H. et al. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Edn 44, 2154–2157 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Drechsler for her support in microfabrication as well as R. Stutz and M. Tschudy for their technical support. A part of this project was funded by the Swiss Commission for Technology and Innovation. The partial support of the State Secretariat for Education and Research (SER) in the framework of the EC-funded project NaPa (Contract No. NMP4-CT-2003-500120) is gratefully acknowledged. The content of this work is the sole responsibility of the authors. We thank P. Seidler for his continuous support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laurent Malaquin or Heiko Wolf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1–S4 (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, T., Malaquin, L., Schmid, H. et al. Nanoparticle printing with single-particle resolution. Nature Nanotech 2, 570–576 (2007). https://doi.org/10.1038/nnano.2007.262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing