Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures

Abstract

The integration of organic and inorganic semiconductors on the nanoscale offers the possibility of developing new photonic devices that combine the best features of these two distinct classes of material. Such devices could, for example, benefit from the large oscillator strengths found in organic materials and the nonlinear optical properties of inorganic species. Here we describe a novel hybrid organic/inorganic nanocomposite in which alternating monolayers of J-aggregates of cyanine dye and crystalline semiconductor quantum dots are grown by a layer-by-layer self-assembly technique. We demonstrate near-field photon-mediated coupling of vastly dissimilar optical excitations in the two materials that can reach efficiencies of up to 98% at room temperature. By varying the size of the quantum dots and thus tuning their optical resonance for absorption and emission, we also show how the ability of J-aggregates to harvest light can be harnessed to increase the effective absorption cross section of the quantum dots by up to a factor of ten. Combining organic and inorganic semiconductors in this way could lead to novel nanoscale designs for light-emitting, photovoltaic and sensor applications1,2,3,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hybrid organic–inorganic (J-aggregate/QD) multilayer film deposited by LBL assembly.
Figure 2: Optical characterizations of hybrid film I to explore resonance energy transfer from QDs to J-aggregates.
Figure 3: Optical characterizations of hybrid film II to explore resonance energy transfer from J-aggregate to QD.

Similar content being viewed by others

References

  1. Coe, S., Woo, W.-K., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002).

    Article  CAS  Google Scholar 

  2. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science 295, 2425–2427 (2002).

    Article  CAS  Google Scholar 

  3. Medintz, I. L. et al. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Mater. 2, 630–638 (2003).

    Article  CAS  Google Scholar 

  4. Becker, K. et al. Electrical control of Förster energy transfer. Nature Mater. 5, 777–781 (2006).

    Article  CAS  Google Scholar 

  5. Basko, D., La Rocca, G. C., Bassani, F. & Agranovich, V. M. Förster energy transfer from a semiconductor quantum well to an organic material overlayer. Eur. Phys. J. B 8, 353–362 (1999).

    Article  CAS  Google Scholar 

  6. Blumstengel, S., Sadofev, S., Xu, C., Puls, J. & Henneberger, F. Converting Wannier into Frenkel excitons in an inorganic/organic hybrid semiconductor nanostructure. Phys. Rev. Lett. 97, 237401 (2006).

    Article  CAS  Google Scholar 

  7. Anikeeva, P. O. et al. Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor. Chem. Phys. Lett. 424, 120–125 (2006).

    Article  CAS  Google Scholar 

  8. Heliotis, G. et al. Hybrid inorganic/organic semiconductor heterostructures with efficient non-radiative energy transfer. Adv. Mater. 18, 334–338 (2006).

    Article  CAS  Google Scholar 

  9. Alivisatos, A. P. Semiconductor clusters, nanocrystals and quantum dots. Science 271, 933–937 (1996).

    Article  CAS  Google Scholar 

  10. Burn, P. W. Aspects of structure and energy transportation in artificial molecular assemblies. Annu. Rev. Phys. Chem. 44, 37–60 (1993).

    Article  Google Scholar 

  11. Achermann, M. et al. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429, 642–646 (2004).

    Article  CAS  Google Scholar 

  12. Kotov, N. A. Ordered layered assemblies of nanoparticles. Mater. Res. Bull. 2001, 992–997 (2001).

    Article  Google Scholar 

  13. Ariga, K., Lvov, Y. & Kunitake, T. Assembling alternate dye–polyion molecular films by electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 119, 2224–2231 (1997).

    Article  CAS  Google Scholar 

  14. Aliev, F. G. et al. Layer-by-layer assembly of core–shell magnetite nanoparticles: effect of silica coating on interparticle interactions and magnetic properties. Adv. Mater. 11, 1006–1010 (1999).

    Article  CAS  Google Scholar 

  15. Decher, G., Lehr, B., Lowack, K., Lvov, Y. & Schmitt, J. New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelectrolytes, proteins or DNA. Biosens. Bioelectron. 9, 677–684 (1994).

    Article  CAS  Google Scholar 

  16. Bradley, M. S., Tischler, J. R. & Bulović, V. Layer-by-layer J-aggregate thin films with a peak absorption constant of 106 cm−1. Adv. Mater. 17, 1881–1886 (2005).

    Article  CAS  Google Scholar 

  17. von Berlepsch, H. et al. Supramolecular structures of J-aggregates of carbocyanine dyes in solution. J. Phys. Chem. B 104, 5255–5262 (2000).

    Article  CAS  Google Scholar 

  18. Mashl, R. J., Grø´nbech-Jensen, N., Fitzsimmons, M. R., Lütt, M. & Li, D. Theoretical and experimental adsorption studies of polyelectrolytes on an oppositely charged surface. J. Chem. Phys. 110, 2219–2225 (1999).

    Article  Google Scholar 

  19. Turro, N. J. Modern Molecular Photochemistry (University Science Books, Mill Valley, California, 1991).

    Google Scholar 

  20. So, F. F. & Forrest, S. R. Evidence for exciton confinement in crystalline organic multiple quantum-wells. Phys. Rev. Lett. 66, 2649–2652 (1991).

    Article  CAS  Google Scholar 

  21. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    Article  CAS  Google Scholar 

  22. Kuhn, H. Classical aspects of energy transfer in molecular systems. J. Chem. Phys. 53, 101–108 (1970).

    Article  CAS  Google Scholar 

  23. Hirano, Y., Ohkubo, M. A., Tokuoka, Y., Kawashima, N. & Ozaki, Y. Orientation of merocyanine dye in mixed Langmuir–Blodgett films investigated by visible absorption spectroscopy. Mol. Cryst. Liq. Cryst. 445, 93–99 (2006).

    Article  CAS  Google Scholar 

  24. Inoue, T., Moriguchi, M. & Ogawa, T. Molecular orientation of oxacyanine dye in an LB film determined by second harmonic generation and polarized absorption techniques. Thin Solid Films 350, 238–244 (1999).

    Article  CAS  Google Scholar 

  25. van Burgel, M., Wiersma, D. A. & Duppen, K. The dynamics of one-dimensional excitons in liquids. J. Chem. Phys. 102, 20–33 (1995).

    Article  CAS  Google Scholar 

  26. Agranovich, V. M., Basko, D. M., La Rocca, G. C. & Bassani, F. Excitons and optical nonlinearities in hybrid organic–inorganic nanostructures. J. Phys. Condens. Matter 10, 9369–9400 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy and the National Science Foundation. We would like to thank S. Sun for support in sample preparation, G. T. R. Palmore for making the fluorescence spectrophotometer available for our use and R. Zia for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nurmikko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1–S3 (PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Atay, T., Tischler, J. et al. Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures. Nature Nanotech 2, 555–559 (2007). https://doi.org/10.1038/nnano.2007.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.253

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing