Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hinged nanorods made using a chemical approach to flexible nanostructures

Abstract

The fabrication of multifunctional nanomaterials and their subsequent use for novel applications in various branches of nanotechnology has been under intense scrutiny. Particularly in the area of nanomechanics, the design of multicomponent nanostructures with an integrated multifunctionality would enable the construction of building blocks for nanoscale analogues of macroscopic objects. Here, we introduce a new class of flexible nanostructures: metallic nanorods with polyelectrolyte hinges, synthesized using layer-by-layer electrostatic self-assembly of oppositely charged polyelectrolytes on barcode metal nanorods followed by segment-selective chemical etching. Nanorods with hinges that consist of one polyelectrolyte bilayer display considerable flexibility, but with a greater number of bilayers the flexibility of the hinge is significantly reduced. Magnetically induced bending about the polymer hinge is illustrated through the incorporation of nickel segments into the barcodes and the application of an external fluctuating magnetic field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme illustrating the synthesis of hinged nanorods using a combination of electrochemical growth of metal nanorods in alumina membranes, followed by layer-by-layer electrostatic assembly of polyelectrolytes and wet chemical etching.
Figure 2: Structural characterization of bilayer encapsulation.
Figure 3: Optical microscope snapshots of an etched two-hinge nanorod {Pt˙˙˙Pt˙˙˙Pt}PEM1 in water.
Figure 4: Contrasting of bending behaviour of a one-hinged nanorod and a bent rigid nanorod.

Similar content being viewed by others

References

  1. Martin, C. R. Nanomaterials: A membrane-based synthetic approach. Science 266, 1961–1966 (1994).

    Article  CAS  Google Scholar 

  2. Nicewarner-Pena, S. R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    Article  CAS  Google Scholar 

  3. Reiss, B. D. et al. Electrochemical synthesis and optical readout of striped metal rods with submicron features. J. Electroanal. Chem. 522, 95–103 (2002).

    Article  CAS  Google Scholar 

  4. Hultgren, A., Tanase, M., Chen, C. S., Meyer, G. J. & Reich, D. H. Cell manipulation using magnetic nanowires. J. Appl. Phys. 93, 7554–7556 (2003).

    Article  CAS  Google Scholar 

  5. Lee, K.-B., Park, S. & Mirkin, C. A. Multicomponent magnetic nanorods for biomolecular separation. Angew. Chem. Int. Edn 43, 3048–3050 (2004).

    Article  CAS  Google Scholar 

  6. Nicewarner-Pena, S. R., Carado, A. J., Shale, K. E. & Keating, C. D. Barcoded metal nanowires: optical reflectivity and patterned fluorescence. J. Phys. Chem. B 107, 7360–7367 (2003).

    Article  CAS  Google Scholar 

  7. Tanase, M. et al. Magnetic alignment of fluorescent nanowires. Nano Lett. 1, 155–158 (2001).

    Article  CAS  Google Scholar 

  8. Love, J. C., Urbach, A. R., Prentiss, M. G. & Whitesides, G. M. Three-dimensional self-assembly of metallic rods with submicron diameters using magnetic interactions. J. Am. Chem. Soc. 125, 12696–12697 (2003).

    Article  CAS  Google Scholar 

  9. Qin, L., Park, S., Huang, L. & Mirkin, C. A. On-wire lithography. Science 309, 113–115 (2005).

    Article  CAS  Google Scholar 

  10. Sioss, J. A. & Keating, C. D. Batch preparation of linear Au and Ag nanoparticle chains via wet chemistry. Nano Lett. 5, 1779–1783 (2005).

    Article  CAS  Google Scholar 

  11. Liu, S. H., Tok, J. B. H. & Bao, Z. N. Nanowire lithography: fabricating controllable electrode gaps using Au-Ag-Au nanowires. Nano Lett. 5, 1071–1076 (2005).

    Article  CAS  Google Scholar 

  12. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  Google Scholar 

  13. Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. Catalytic nanomotors: remote-controlled atonomous movement of striped metallic nanorods. Angew. Chem. Int. Edn 44, 744–746 (2005).

    Article  CAS  Google Scholar 

  14. Fournier-Bidoz, S., Arsenault, A. C., Manners, I. & Ozin, G. A. Synthetic self-propelled nanomotors. Chem. Commun. 441–443 (2004).

  15. Paxton, W. F., Sen, A. & Mallouk, T. E. Motility of catalytic nanoparticles through self-generated forces. Chem. Eur. J. 11, 6462–6470 (2005).

    Article  CAS  Google Scholar 

  16. Ozin, G. A., Manners, I., Fournier, S. B. & Arsenault, A. Dream nanomachines. Adv. Mater. 17, 3011–3018 (2005).

    Article  CAS  Google Scholar 

  17. Petrovykh, D. Y. et al. Alkanethiols on platinum: multicomponent self-assembled monolayers. Langmuir 22, 2578–2587 (2006).

    Article  CAS  Google Scholar 

  18. Yu, J.-S., Kim, J. Y., Lee, S., Mbindyo, J. K. N., Martin, B. R. & Mallouk, T. E. Template synthesis of polymer-insulated colloidal gold nanowires with reactive ends. Chem. Commun. 2445 (2000).

  19. Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    Article  CAS  Google Scholar 

  20. Mueller, R., Kohler, K., Weinkamer, R., Sukhorukov, G. & Fery, A. Melting of PDADMAC/PSS capsules investigated with AFM force spectroscopy. Macromolecules 38, 9766–9771 (2005).

    Article  CAS  Google Scholar 

  21. Lobo, R. F. M., Pereira-da-Silva, M. A., Raposo, M., Faria, R. M. & Oliveira, O. N. Jr . The morphology of layer-by-layer films of polymer/polyelectrolyte studied by atomic force microscopy. Nanotechnology 14, 101–108 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.A.O. is the Government of Canada Research Chair. He is deeply indebted to the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support for this work. A.A. and T.M. thank NSERC for graduate scholarships in support of their research. The authors wish to thank L. Cademartiri for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.A. developed the original concept. A.A. and S.F. designed the experiment. M.L.F. performed the experiments on one-hinged nanorods. T.M. performed the experiment on two-hinged nanorods, analysed the brownian bending motion and incorporated the magnetic segment into the hinged barcodes. N.Z. greatly assisted in the experiments required to complete the study. All authors co-wrote the paper.

Corresponding authors

Correspondence to Tihana Mirkovic, Maw Lin Foo or Geoffrey A. Ozin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S3, S5 and S7 + captions and supplementary movie captions (PDF 3093 kb)

Supplementary Information

Supplementary movie S2 (MOV 384 kb)

Supplementary Information

Supplementary movie S4 (MOV 241 kb)

Supplementary Information

Supplementary movie S6 (MOV 248 kb)

Supplementary Information

Supplementary movie S8 (MOV 253 kb)

Supplementary Information

Supplementary movie S9 (MOV 208 kb)

Supplementary Information

Supplementary movie S10 (MOV 876 kb)

Supplementary Information

Supplementary movie S11 (MOV 441 kb)

Supplementary Information

Supplementary movie S12 (MOV 628 kb)

Supplementary Information

Supplementary movie S13 (MOV 660 kb)

Supplementary Information

Supplementary movie S14 (MOV 71 kb)

Supplementary Information

Supplementary movie S15 (MOV 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirkovic, T., Foo, M., Arsenault, A. et al. Hinged nanorods made using a chemical approach to flexible nanostructures. Nature Nanotech 2, 565–569 (2007). https://doi.org/10.1038/nnano.2007.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing