Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assembly of aligned linear metallic patterns on silicon

Abstract

In order to harness the potential of block copolymers to produce nanoscale structures that can be integrated with existing silicon-based technologies, there is a need for compatible chemistries. Block copolymer nanostructures can form a wide variety of two-dimensional patterns, and can be controlled to present long-range order. Here we use the acid-responsive nature of self-assembled monolayers of aligned, horizontal block copolymer cylinders for metal loading with simple aqueous solutions of anionic metal complexes, followed by brief plasma treatment to simultaneously remove the block copolymer and produce metallic nanostructures. Aligned lines of metal with widths on the order of 10 nm and less are efficiently produced by means of this approach on Si(100) interfaces. The method is highly versatile because the chemistry to manipulate nanowire composition, structure and choice of semiconductor is under the control of the user.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schema of the self-assembly process for monolayers of horizontal, cylindrical PS-b-P2VP block copolymers on surfaces.
Figure 2: SEM images of gold, palladium and platinum lines formed on a silicon substrate using a PS-b-P2VP copolymer template.
Figure 3: Response of the PS-b-P2VP block copolymer films to acid.
Figure 4: Summary of the chemistry used to produce metallic nanostructures.
Figure 5: Aligned gold and platinum nanostructures with long-range order.

Similar content being viewed by others

References

  1. Ieong, M., Doris, B., Kedzierski, J., Rim, K. & Yang, M. Silicon device scaling to the sub-10-nm regime. Science 306, 2057–2060 (2004).

    CAS  Google Scholar 

  2. Ginger, D. S., Zhang, H. & Mirkin, C. A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Edn 43, 30–45 (2004).

    Google Scholar 

  3. Gates, B. D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    CAS  Google Scholar 

  4. Bratton, D., Yang, D., Dai, J. Y. & Ober, C. K. Recent progress in high resolution lithography. Polym. Adv. Technol. 17, 94–103 (2006).

    CAS  Google Scholar 

  5. Black, C. T. Self-aligned self assembly of multi-nanowire silicon field effect transistors. Appl. Phys. Lett. 87, 163116 (2005).

    Google Scholar 

  6. Guarini, K. W. et al. Process integration of self-assembled polymer templates into silicon nanofabrication. J. Vac. Sci. Technol. B 20, 2788–2792 (2002).

    CAS  Google Scholar 

  7. Ryu, D. Y., Shin, K., Drockenmuller, E., Hawker, C. J. & Russell, T. P. A generalized approach to the modification of solid surfaces. Science 308, 236–239 (2005).

    CAS  Google Scholar 

  8. Ikkala, O. & Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 295, 2407–2409 (2002).

    CAS  Google Scholar 

  9. Segelman, R. A. Patterning with block copolymer thin films. Mater. Sci. Eng. R. 48, 191–226 (2005).

    Google Scholar 

  10. Ludwigs, S. et al. Self-assembly of functional nanostructures from ABC triblock copolymers. Nature Mater. 2, 744–747 (2003).

    CAS  Google Scholar 

  11. Glass, R., Möller, M. & Spatz, J. Block copolymer micelle nanolithography. Nanotechnology 14, 1153–1160 (2003).

    CAS  Google Scholar 

  12. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001).

    CAS  Google Scholar 

  13. Aizawa, M. & Buriak, J. M. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template. J. Am. Chem. Soc. 128, 5877–5886 (2006).

    CAS  Google Scholar 

  14. Shenhar, R., Jeoung, E., Srivistava, S., Norsten, T. B. & Rotello, V. M. Crosslinked nanoparticle stripes and hexagonal networks obtained via selective patterning of block copolymer thin films Adv. Mater. 17, 2206–2210 (2005).

    CAS  Google Scholar 

  15. Hamley, I. W. Nanotechnology with soft materials. Angew. Chem. Int. Edn 42, 1692–1712 (2003).

    CAS  Google Scholar 

  16. Ruzette, A.-V. & Leibler, L. Block copolymers in tomorrow's plastics. Nature Mater. 4, 19–31 (2005).

    CAS  Google Scholar 

  17. Haryono, A. & Binder, W. H. Controlled arrangement of nanoparticle arrays in block-copolymer domains. Small 2, 600–611 (2006).

    CAS  Google Scholar 

  18. Wang, X. S., Winnik, M. A. & Manners, I. Syn thesis, self-assembly, and applications of polyferrocenylsilane block copolymers. ACS Symp. Ser. 928, 274–291 (2006).

    CAS  Google Scholar 

  19. Ciebien, J. F., Clay, R. T., Sohn, B. H. & Cohen, R. E. Brief review of metal nanoclusters in block copolymer films. New J. Chem. 22, 685–691 (1998).

    CAS  Google Scholar 

  20. Jung, S. et al. Fabrication of nanostructure and formation of nanocrystal for non-volatile memory. J. Nanosci. Nanotechnol. 6, 3652–3656 (2006).

    CAS  Google Scholar 

  21. Li, M. & Ober, K. Block copolymer patterns and templates. Mater. Today 9, 31–39 (2006).

    CAS  Google Scholar 

  22. Cheng, J. Y. et al. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174–1178 (2001).

    CAS  Google Scholar 

  23. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

    CAS  Google Scholar 

  24. Clay, R. T. & Cohen, R. E. Synthesis of metal nanoclusters within microphase-separated diblock copolymers: sodium carboxylate vs carboxylic acid functionalization. Supramolecular Sci. 5, 41–48 (1998).

    CAS  Google Scholar 

  25. Yun, S. H. et al. Electrically anisotropic thin films consisting of polymeric and metallic nanolayers from self-assembled lamellae of diblock copolymers. Langmuir 21, 3625–3628 (2005).

    CAS  Google Scholar 

  26. Spatz, J. P., Roescher, A. & Moller, M. Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films-size and interparticle distance control in monoparticulate films. Adv. Mater. 8, 337–340 (1996).

    CAS  Google Scholar 

  27. Chiu, J. J., Kim, B. J., Kramer, E. J. & Pine, D. J. Control of nanoparticle location in block copolymers. J. Am. Chem. Soc. 127, 5036–5037 (2005).

    CAS  Google Scholar 

  28. Tsutsumi, K., Funaki, Y., Hirokawa, Y. & Hashimoto, T. Selective incorporation of palladium nanoparticles into microphase-separated domains of poly(2-vinylpyridine)-block-polyisoprene. Langmuir 15, 5200–5203 (1999).

    CAS  Google Scholar 

  29. Morkved, T. L. et al. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273, 931–933 (1996).

    CAS  Google Scholar 

  30. Xu, H. et al. Flow-enhanced epitaxial ordering of brush-like macromolecules on graphite. Langmuir 22, 1254–1259 (2006).

    CAS  Google Scholar 

  31. Huang, Z. F. & Vinals, J. Orientation selection in lamellar phases by oscillatory shears. Phys. Rev. E 73, 0501 (2006).

    Google Scholar 

  32. Chen, Z. R., Kornfield, J. A., Smith, S. D., Grothaus, J. T. & Satkowski, M. M. Pathways to macroscale order in nanostructures block copolymers. Science 277, 1248–1253 (1997).

    CAS  Google Scholar 

  33. Hahm, J. & Sibener, S. J. Cylinder alignment in annular structures of microphase-separated polystyrene-b-poly(methyl methacrylate). Langmuir 16, 4766–4769 (2000).

    CAS  Google Scholar 

  34. Edwards, E. W., Stoykovich, M. P., Solak, H. H. & Nealey, P. F. Long-range order and orientation of cylinder-forming block copolymers on chemically nanopatterned striped surfaces. Macromolecules 39, 3598–3607 (2006).

    CAS  Google Scholar 

  35. Park, C., Yoon, J. & Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 44, 6725–6760 (2003).

    CAS  Google Scholar 

  36. Sundrani, D., Darling, S. B. & Sibener, S. J. Hierarchical assembly and compliance of aligned nanoscale polymer cylinders in confinement. Langmuir 20, 5091–5099 (2004).

    CAS  Google Scholar 

  37. Cheng, J. Y., Ross, C. A., Smith, R. H. & Thomas, E. L. Templated self-assembly of block copolymers: top–down helps bottom–up. Adv. Mater. 18, 2505–2521 (2006).

    CAS  Google Scholar 

  38. Huck, W. T. S. Effects of nanoconfinement on the morphology and reactivity of organic materials. Chem. Commun. 33, 4143–4148 (2005).

    Google Scholar 

  39. Xiao, S. G., Yang, X. M., Edwards, E. W., La, Y. H. & Nealey, P. F. Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays. Nanotechnology 16, S324–S329 (2005).

    Google Scholar 

  40. Hammond, M. R. & Kramer, E. J. Edge effects on thermal disorder in laterally confined diblock copolymer cylinder monolayers. Macromolecules 39, 1538–1544 (2006).

    CAS  Google Scholar 

  41. Jaramillo, T. F., Baeck, S.-H., Cuenya, B. R. & McFarland, E. W. Catalytic activity of supported Au nanoparticles deposited from block copolymer micelles. J. Am. Chem. Soc. 125, 7148–7149 (2003).

    CAS  Google Scholar 

  42. Loxley, A. & Vincent, B. Equilibrium and kinetic aspects of the pH-dependent swelling of poly(2-vinylpyridine-co-styrene) microgels. Colloid Polym. Sci. 275, 1108–1114 (1997).

    CAS  Google Scholar 

  43. Fernández-Nieves, A., Fernández-Barbero, A., Vincent, B. & de la Nieves, F. J. Charge controlled swelling of microgel particles. Macromolecules 33, 2114–2118 (2000).

    Google Scholar 

  44. Xu, C. et al. Reversible stimuli-responsive nanostructures assembled from amphiphilic block copolymers. Nano Lett. 6, 282–287 (2006).

    CAS  Google Scholar 

  45. Xu, C., Wayland, B. B., Fryd, M., Winey, K. I. & Composto, R. J. pH-responsive nanostructures assembled from amphiphilic block copolymers. Macromolecules 39, 6063–6070 (2006).

    CAS  Google Scholar 

  46. Menke, E. J., Thompson, M. A., Xiang, C., Yang, L. C. & Penner, R. M. Lithographically patterned nanowire electrodeposition. Nature Mater. 5, 914–919 (2006).

    CAS  Google Scholar 

  47. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    CAS  Google Scholar 

  48. Battison, A. G., Gerbasi, R. & Rodriguez, A. A novel study of the growth and resistivity of nanocrystalline Pt films obtained form acac)2the presence of oxygen or water vapor. Chem. Vap. Depos. 11, 130–135 (2005).

    Google Scholar 

  49. Murray, B. J., Walter, E. C. & Penner, R. M. Amine vapor sensing with silver mesowires. Nano Lett. 4, 665–670 (2004).

    CAS  Google Scholar 

  50. Kern, W. Overview and evolution of semiconductor wafer contamination and cleaning technology . In Handbook of Semiconductor Wafer Cleaning Technology, (Noyes Publications, Park Ridge, 1993).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Council of Canada, the University of Alberta, Natural Sciences and Engineering Research Council (NSERC) and the Canadian Foundation for Innovation. J.C. acknowledges financial support from the Alberta Ingenuity through a studentship fund and an NSERC PGS-D scholarship. X.F. holds an NSERC USRA. We are also thankful for the technical support provided at NINT, the Alberta Centre for Surface Engineering and Science and the Nanofab at the University of Alberta.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and J.M.B. conceived and designed the experiments. J.C. performed most of the experiments. J.C. and J.M.B analysed the data. D.W. assisted with the electrical measurement and analysis. X.F. contributed to AFM characterization of polymer flipping. J.C and J.M.B. co-wrote the paper.

Corresponding author

Correspondence to Jillian M. Buriak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1–S5 (PDF 477 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, J., Wang, D., Fan, X. et al. Assembly of aligned linear metallic patterns on silicon. Nature Nanotech 2, 500–506 (2007). https://doi.org/10.1038/nnano.2007.227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing