Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum


Nanocrystals are under active investigation because of their interesting size-dependent properties1,2 and potential applications3,4,5. Silicon nanocrystals have been studied for possible uses in optoelectronics6, and may be relevant to the understanding of natural processes such as lightning strikes7. Gas-phase methods can be used to prepare nanocrystals, and mass spectrometric techniques have been used to analyse Au8,9 and CdSe clusters10. However, it is difficult to study nanocrystals by such methods unless they are synthesized in the gas phase11. In particular, pre-prepared nanocrystals are generally difficult to sublime without decomposition. Here we report the observation that films of alkyl-capped silicon nanocrystals evaporate upon heating in ultrahigh vacuum at 200 °C, and the vapour of intact nanocrystals can be collected on a variety of solid substrates. This effect may be useful for the controlled preparation of new quantum-confined silicon structures and could facilitate their mass spectroscopic study and size-selection12.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoemission spectra of C11-SiNCs on a gold nitride foil.
Figure 2: Aberration-corrected STEM of evaporated C11-SiNCs.
Figure 3: Atomic force microscopy of C11-SiNCs evaporated onto Si(111) surfaces.
Figure 4: Raman and luminescence spectra of C11-SiNCs before and after evaporation.


  1. Banin, U. & Millo, O. Tunneling and optical spectroscopy of semiconductor nanocrystals. Annu. Rev. Phys. Chem. 54, 465–492 (2003).

    Article  CAS  Google Scholar 

  2. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    Article  CAS  Google Scholar 

  3. Bruchez, M. J., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998).

    Article  CAS  Google Scholar 

  4. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998).

    Article  CAS  Google Scholar 

  5. Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004).

    Article  Google Scholar 

  6. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

    Article  CAS  Google Scholar 

  7. Abrahamson, J. & Dinniss, J. Ball lightning caused by oxidation of nanoparticle networks from normal lightning strikes on soil. Nature 403, 519–521 (2000).

    Article  CAS  Google Scholar 

  8. Schaaff, T. G., Shafigullin, M. N., Khoury, J. T., Vezmar, I. & Whetten, R. L. Isolation of smaller nanocrystal Au molecules: robust quantum effects in optical spectra—MALDI MS of nanoparticles. J. Phys. Chem. B 101, 7885–7891 (1997).

    Article  CAS  Google Scholar 

  9. Serna, R. et al. Matrix assisted laser desorption/ionisation studies of metallic nanoclusters produced by pulsed laser deposition. Appl. Surf. Sci. 129, 383–387 (1998).

    Article  Google Scholar 

  10. Kasuya, A. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Mater. 3, 99–102 (2004).

    Article  CAS  Google Scholar 

  11. Ledoux, G., Gong, J., Huisken, F., Guillois, O. & Reynaud, C. Photoluminescence of size-separated silicon nanocrystals: Confirmation of quantum confinement. Appl. Phys. Lett. 80, 4834–4836 (2002).

    Article  CAS  Google Scholar 

  12. Reboredo, F. A. & Galli, G. Theory of alkyl-terminated silicon quantum dots. J. Phys. Chem. B 109, 1072–1078 (2005).

    Article  CAS  Google Scholar 

  13. Lie, L. H., Duerdin, M., Tuite, E. M., Houlton, A. & Horrocks, B. R. Preparation and characterisation of luminescent alkylated silicon quantum dots. J. Electroanal. Chem. 538, 183–190 (2002).

    Article  Google Scholar 

  14. Lie, L. H. et al. Immobilisation and synthesis of DNA on Si(111), nanocrystalline porous silicon and silicon nanoparticles. Faraday Discuss. 125, 235–249 (2004).

    Article  CAS  Google Scholar 

  15. Ding, Z. F. et al. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296, 1293–1297 (2002).

    Article  CAS  Google Scholar 

  16. Li, X. G., He, Y. Q. & Swihart, M. T. Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. Langmuir 20, 4720–4727 (2004).

    Article  CAS  Google Scholar 

  17. Li, Z. F. & Ruckenstein, E. Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, 1463–1467 (2004).

    Article  CAS  Google Scholar 

  18. Pettigrew, K. A., Liu, Q., Power, P. P. & Kauzlarich, S. M. Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem. Mater. 15, 4005–4011 (2003).

    Article  CAS  Google Scholar 

  19. Warner, J. H., Hoshino, A., Yamamoto, K. & Tilley, R. D. Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Edn 44, 4550–4554 (2005).

    Article  CAS  Google Scholar 

  20. Nayfeh, M. H. et al. Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl. Phys. Lett. 78, 1131–1133 (2001).

    Article  CAS  Google Scholar 

  21. Sweryda-Krawiec, B., Cassagneau, T. & Fendler, J. H. Surface modification of silicon nanocrystallites by alcohols. J. Phys. Chem. B 103, 9524–9529 (1999).

    Article  CAS  Google Scholar 

  22. Faucheux, A. et al. Thermal decomposition of alkyl monolayers covalently grafted on (111) silicon. Appl. Phys. Lett. 88, 193123 (2006).

    Article  CAS  Google Scholar 

  23. Sung, M. M., Kluth, G. J., Yauw, O. W. & Maboudian, R. Thermal behavior of alkyl monolayers on silicon surfaces. Langmuir 13, 6164–6168 (1997).

    Article  CAS  Google Scholar 

  24. Chao, Y. et al. Reactions and luminescence in passivated Si nanocrystals induced by vacuum ultraviolet and soft-x-ray photons. J. Appl. Phys. 98, 044316 (2005).

    Article  CAS  Google Scholar 

  25. Linford, M. R., Fenter, P., Eisenberger, P. M. & Chidsey, C. E. D. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc. 117, 3145–3155 (1995).

    Article  CAS  Google Scholar 

  26. Ebenstein, Y., Nahum, E. & Banin, U. Tapping mode atomic force microscopy for nanoparticle sizing: Tip–sample interaction effects. Nano Lett. 2, 945–950 (2002).

    Article  CAS  Google Scholar 

  27. Ashurst, W. R., Carraro, C. & Maboudian, R. Vapor phase anti-stiction coatings for MEMS. IEEE Trans. Device Mater. Reliab. 3, 173–178 (2003).

    Article  CAS  Google Scholar 

  28. Nishida, N., Hara, M., Sasabe, H. & Knoll, W. Dimerization process in alkanethiol self-assembled monolayer on Au(111). Jpn J. Appl. Phys. 35, L799–L802 (1996).

    Article  CAS  Google Scholar 

Download references


The Engineering and Physical Sciences Research Council (EPSRC) and the Centre of Excellence for Nanotechnology, Micro and Photonic Systems (CeNAMPs) are acknowledged for funding this work. We also acknowledge the European Commission Access to Research Infrastructure (EC-ARI) programme support for work undertaken at MAXLAB. The advice of D. Robbins is appreciated. J. G. Grossmann (Council for the Central Laboratory of the Research Councils (CCLRC)) Daresbury Laboratory, Daresbury, Warrington, Cheshire, UK) and K. Liddell (School of Chemical Engineering and Advanced Materials, University of Newcastle upon Tyne) are thanked for their help with SAXS and X-ray diffraction measurements, respectively.

Author information

Authors and Affiliations



L.S. and Y.C. developed the evaporation apparatus; Y.C. carried out AFM, Raman and photoluminescence measurements. Y.C., L.S., S.K. and L.K. performed photoemission studies, P.R.C., U.B. and M.G. carried out TEM imaging and EEL spectra. L.H.L., N.O'F. and T.A.A. developed the preparation method and FTIR characterization. Y.C. and T.A.A. carried out SAXS measurements. S.N.P. characterized the samples by STM. L.S., Y.C., A.H. and B.R.H. analysed data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Satheesh Krishnamurthy, Samson N. Patole, Lars H. Lie or Benjamin R. Horrocks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods, table and figures S1–S16 (PDF 2466 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chao, Y., Šiller, L., Krishnamurthy, S. et al. Evaporation and deposition of alkyl-capped silicon nanocrystals in ultrahigh vacuum. Nature Nanotech 2, 486–489 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research