Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dielectric-modulated field-effect transistor for biosensing

Abstract

Interest in biosensors based on field-effect transistors (FETs), where an electrically operated gate controls the flow of charge through a semiconducting channel, is driven by the prospect of integrating biodetection capabilities into existing semiconductor technology1. In a number of proposed FET biosensors, surface interactions with biomolecules in solution affect the operation of the gate or the channel2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19. However, these devices often have limited sensitivity. We show here that a FET biosensor with a vertical gap is sensitive to the specific binding of streptavidin to biotin. The binding of the streptavidin changes the dielectric constant (and capacitance) of the gate, resulting in a large shift in the threshold voltage for operating the FET. The vertical gap is fabricated using simple thin-film deposition and wet-etching techniques. This may be an advantage over planar nanogap FETs, which require lithographic processing20,21,22,23,24. We believe that the dielectric-modulated FET (DMFET) provides a useful approach towards biomolecular detection that could be extended to a number of other systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A DMFET.
Figure 2: IDSVGS characteristics of the DMFET nanogap device.
Figure 3: Electrical characteristics of the DMFET nanogap device before and after biomolecules are immobilized in the nanogap.
Figure 4: Comparison of the electrical characteristics of the DMFET nanogap device (gap size, 15 nm; length, 200 nm) in five controlled experiments.

Similar content being viewed by others

References

  1. Kim, D. S. et al. An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes. Sens. Actuator B 117, 488–494 (2006).

    Article  CAS  Google Scholar 

  2. Purushothaman, S., Toumazou, C. & Ou, C. P. Protons and single nucleotide polymorphism detection: A simple use for the ion sensitive field effect transistor. Sens. Actuator B 114, 964–968 (2006).

    Article  CAS  Google Scholar 

  3. Shekhawat, G., Tark, S. H. & Dravid, V. P. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science 311, 1592–1595 (2006).

    Article  CAS  Google Scholar 

  4. Wang, W. U., Chen, C., Lin, K. H., Fang, Y. & Lieber, C. M. Label-free detection of small-molecule–protein interactions by using nanowire nanosensors. Proc. Natl Acad. Sci. USA 102, 3208–3212 (2005).

    Article  CAS  Google Scholar 

  5. Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).

    Article  CAS  Google Scholar 

  6. Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  7. Patolsky, F. et al. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA 101, 14017–14022 (2004).

    Article  CAS  Google Scholar 

  8. Li, C. et al. Chemical gating of In2O3 nanowires by organic and biomolecules. Appl. Phys. Lett. 83, 4014–4016 (2003).

    Article  CAS  Google Scholar 

  9. Bradley, K., Cumings, J., Star, A., Gabriel, J. C. P. & Grüner, G. Influence of mobile ions on nanotube based FET devices. Nano Lett. 3, 639–641 (2003).

    Article  CAS  Google Scholar 

  10. Star, A. et al. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl Acad. Sci. USA 103, 921–926 (2006).

    Article  CAS  Google Scholar 

  11. Star, A., Gabriel, J. C. P., Bradley, K. & Grüner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3, 459–463 (2003).

    Article  CAS  Google Scholar 

  12. Star, A., Han, T. R., Gabriel, J. C. P., Bradley, K. & Grüner, G. Interaction of aromatic compounds with carbon nanotubes: correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett. 3, 1421–1423 (2003).

    Article  CAS  Google Scholar 

  13. Star, A., Han, T. R., Joshi, V., Gabriel, J. C. P. & Grüner, G. Nanoelectronic carbon dioxide sensors. Adv. Mater. 16, 2049–2052 (2004).

    Article  CAS  Google Scholar 

  14. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article  CAS  Google Scholar 

  15. Keren, K., Berman, R. S., Buchstab, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1383 (2003).

    Article  CAS  Google Scholar 

  16. Stutzmann, N., Friend, R. H. & Sirringhaus, H. Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003).

    Article  CAS  Google Scholar 

  17. Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005).

    Article  CAS  Google Scholar 

  18. Muccini, M. A bright future for organic field-effect transistors. Nature Mater. 5, 605–613 (2006).

    Article  CAS  Google Scholar 

  19. Oprea, A. et al. Copper phthalocyanine suspended gate field effect transistors for NO2 detection. Sens. Actuator B 118, 249–254 (2006).

    Article  CAS  Google Scholar 

  20. Krahne, R. et al. Nanoparticles and nanogaps: controlled positioning and fabrication. Physica E 17, 498–502 (2003).

    Article  CAS  Google Scholar 

  21. Iqbal, S. M., Balasundaram, G., Ghosh, S., Bergstrom, D. E. & Bashir, R. Direct current electrical characterization of ds-DNA in nanogap junctions. Appl. Phys. Lett. 86, 153901–153903 (2005).

    Article  Google Scholar 

  22. Ionescu-Zanetti, C., Nevill, J. T., Carlo, D. D., Jeong, K. H. & Lee, L. P. Nanogap capacitors: Sensitivity to sample permittivity changes. J. Appl. Phys. 99, 024305–024309 (2006).

    Article  Google Scholar 

  23. Lazzarino, M. et al. Twin cantilevers with a nanogap for single molecule experimentation. Microelectron. Eng. 83, 1309–1311 (2006).

    Article  CAS  Google Scholar 

  24. Yi, M. Q., Jeong, K. H. & Lee, L. P. Theoretical and experimental study towards a nanogap dielectric biosensor. Biosens. Bioelectron. 20, 1320–1326 (2005).

    Article  CAS  Google Scholar 

  25. ATLAS v2002 User's Manual (Silvaco, Santa Clara, California, 2006).

  26. Chen, C. D., Cheng, S. F., Chau, L. K. & Wang, C. R. C. Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosens. Bioelectron. 22, 926–932 (2007).

    Article  CAS  Google Scholar 

  27. Jang, D. Y. et al. Sub-lithographic vertical gold nanogap for label free electrical detection of protein–ligand binding. J. Vac. Sci. Technol. B 25, 443–447 (2007).

    Article  CAS  Google Scholar 

  28. Holmberg, A. et al. The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26, 501–510 (2005).

    Article  CAS  Google Scholar 

  29. Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhäusser, A. & Schöning, M. J. Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices. Sens. Actuator B 111–112, 470–480 (2005).

    Article  Google Scholar 

  30. Tabata, O., Asahi, R., Funabashi, H., Shimaoka, K. & Sugiyama, S. Anisotropic etching of silicon in TMAH solutions. Sens. Actuator A 34, 51–57 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research and Development Program (NRDP, 2005-01274) for biomedical function monitoring biosensor development sponsored by the Korea Ministry of Science and Technology (MOST). X.J.H. would like to express appreciation for the financial support of the Brain Korea 21 project, the School of Information Technology, and the Korea Advanced Institute of Science and Technology in 2007. The work was partially supported by the Center for Ultramicrochemical Process Systems, sponsored by KOSEF and Samsung Electronics.

Author information

Authors and Affiliations

Authors

Contributions

Y.K.C. conceived the biosensor application with a dielectric-modulated field-effect transistor. H.I. and Y.K.C. designed the transistor experiments, and H.I. fabricated the transistors. X.J.H. and H.I. performed bio-related experiments, and B.G. worked on simulation. H.I. and X.J.H. co-wrote the paper. All authors contributed data analysis and interpretation equally.

Corresponding author

Correspondence to Yang-Kyu Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1–S3 (PDF 260 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, H., Huang, XJ., Gu, B. et al. A dielectric-modulated field-effect transistor for biosensing. Nature Nanotech 2, 430–434 (2007). https://doi.org/10.1038/nnano.2007.180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing