Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Biomimetics of photonic nanostructures

Abstract

Biomimetics is the extraction of good design from nature. One approach to optical biomimetics focuses on the use of conventional engineering methods to make direct analogues of the reflectors and anti-reflectors found in nature. However, recent collaborations between biologists, physicists, engineers, chemists and materials scientists have ventured beyond experiments that merely mimic what happens in nature, leading to a thriving new area of research involving biomimetics through cell culture. In this new approach, the nanoengineering efficiency of living cells is harnessed and natural organisms such as diatoms and viruses are used to make nanostructures that could have commercial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Natural and fabricated anti-reflective surfaces.
Figure 2: Replicating the iridescent cuticle of a beetle.
Figure 3: The iridescent wings of a Morpho butterfly.
Figure 4: The periodic structures found in the walls of some diatoms could have useful optical properties for applications.
Figure 5: Made-to-measure structures in cell walls.
Figure 6: The basic elements of cell engineering.

Similar content being viewed by others

References

  1. Parker, A. R. 515 million years of structural colour. J. Opt. A 2, R15–28 (2000).

    Article  Google Scholar 

  2. Parker, A. R., McPhedran, R. C., McKenzie, D. R., Botten, L. C. & Nicorovici, N. A. P. Aphrodite's iridescence. Nature 409, 36–37 (2001).

    Article  CAS  Google Scholar 

  3. Gordon R. & Parkinson, J. Potential roles for diatomists in nanotechnology. J. Nanosci. Nanotech. 5, 51—56 (2005).

    Google Scholar 

  4. Miller, W. H., Moller, A. R. & Bernhard, C. G. in The Functional Organisation of the Compound Eye (ed. Bernhard C. G.). 21–33 (Pergamon Press, Oxford, 1966).

    Google Scholar 

  5. Yoshida, A., Motoyama, M., Kosaku, A. & Miyamoto, K. Antireflective nanoprotuberance array in the transparent wing of a hawkmoth Cephanodes hylas. Zool. Sci. 14, 737–741 (1997).

    Article  Google Scholar 

  6. Gale, M. Diffraction, beauty and commerce. Phys. World 2, 24–28 (October, 1989).

    Article  Google Scholar 

  7. Boden, S. A. & Bagnall, D. M. in Proc. 4th World Conference on Photovoltaic Energy Conversion, Hawaii 1358–1361 (IEEE, 2006).

    Google Scholar 

  8. Parker, A. R., Hegedus, Z. & Watts, R. A. Solar-absorber type antireflector on the eye of an Eocene fly (45Ma) Proc. R. Soc. Lond. B 265, 811–815 (1998).

    Article  Google Scholar 

  9. Beale, B. Fly eye on the prize. The Bulletin 46–48 (25 May 1999).

  10. Berthier et al. Anticounterfeiting using biomimetic polarization effects. Appl. Phys. A 86, 123 (2007).

    Article  CAS  Google Scholar 

  11. Vigneron, J. P. et al. Spectral filtering of visible light by the cuticle of metallic woodboring beetles and microfabrication of a matching bioinspired material. Phys. Rev. E 73, 041905 (2006).

    Article  Google Scholar 

  12. López, C. Three-dimensional photonic band-gap materials: semiconductors for light J. Opt. A 8, R1–14 (2006).

    Article  Google Scholar 

  13. Cohen, R. E., Zhai, L., Nolte, A. & Rubner, M. F. pH gated porosity transitions of polyelectrolyte multilayers in confined geometries and their applications as tunable Bragg reflectors. Macromolecules 37, 6113 (2004).

    Article  Google Scholar 

  14. Ghiradella, H. Structure and development of iridescent butterfly scales: lattices and laminae. J. Morph. 202, 69–88 (1989).

    Article  CAS  Google Scholar 

  15. Vukusic P., Sambles J. R., Lawrence C. R. & Wootton, R. J. Structural colour: Now you see it — now you don't. Nature 410, 36 (2001).

    Article  CAS  Google Scholar 

  16. Berthier, S. Iridescence: The Physical Colors of Insects (Springer, New York, 2006).

    Google Scholar 

  17. DeSilva, L. et al. Natural and nanoengineered chiral reflectors: structural colour of manuka beetles and titania coatings. Electromagnetics 25, 391–408 (2005).

    Article  Google Scholar 

  18. Kinoshita, S., Yoshioka, S., Fujii, Y. & Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma 17, 103–121 (2002).

    Google Scholar 

  19. Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. & Matsui, S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn. J. Appl. Phys. 44, L48–L50 (2005).

    Article  CAS  Google Scholar 

  20. Zhang, W. et al. Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates. Bioinspir. Biomim. (submitted).

  21. Potyrailo, R. A. et al. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photonics 1, 123–128 (2007).

    Article  CAS  Google Scholar 

  22. Fuhrmann, T., Lanwehr, S., El Rharbi-Kucki, M. & Sumper, M. Diatoms as living photonic crystals. Appl. Phys. B 78, 257–260 (2004).

    Article  CAS  Google Scholar 

  23. Lehmann, V. On the origin of electrochemical oscillations at silicon electrodes. J. Electrochem. Soc. 143, 1313 (1993).

    Article  Google Scholar 

  24. Rosi, N. L., Thaxton, C. S. & Mirkin, C. A. Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Edn 43, 5500–5503 (2004).

    Article  CAS  Google Scholar 

  25. Cullis, A. G., Canham, L. T. & Calcott, P. D. J. The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997).

    Article  CAS  Google Scholar 

  26. De Stefano, L., Rendina, I., De Stefano, M., Bismuto, A. & Maddalena, P. Marine diatoms as optical chemical sensors. Appl. Phys. Lett. 87, 233902 (2005).

    Article  Google Scholar 

  27. Sandhage, K. H. et al. Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14, 429–433 (2002).

    Article  CAS  Google Scholar 

  28. Bao, Z. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas Nature 446, 172—175 (2007).

    Article  CAS  Google Scholar 

  29. Rorrer, G. L. et al. Biosynthesis of silicon-germanium oxide nanocomposites by the marine diatom Nitzschia frustulum. J. Nanosci. Nanotechnol. 5, 41–49 (2004).

    Article  Google Scholar 

  30. Hildebrand, M. & Palenik, B. Investigation into the Optical Properties of Nanostructured Silica from Diatoms. Grant report (2003); www.stormingmedia.co.uk

    Book  Google Scholar 

  31. Quintero-Torres, R., Aragon, J. L., Torres, M., Estrada, M. & Gros, L. Strong far field coherent scattering of UV radiation by holococcolithophores. Phys. Rev.E 74 (2006).

  32. Juhl, S. B. et al. Assembly of Wisean Iridovirus: Viruses for photonic crystals. Adv. Funct. Mater. 16, 1086–1094 (2002).

    Article  Google Scholar 

  33. Radloff, C., Vaia, R. A., Brunton, J., Bouwer, G. T. & Ward, V. K. Metal nanoshell assembly on a virus bioscaffold. Nano Lett. 5, 1187–1191 (2005).

    Article  CAS  Google Scholar 

  34. Giraud-Guille, M. M., Besseau, L. & Martin, R. Liquid crystalline assemblies of collagen in bone and in vitro systems. J. Biomech. 36, 1571–1579 (2003).

    Article  Google Scholar 

  35. Parker, A. R., Welch, V. L., Driver, D. & Martini, N. An opal analogue discovered in a weevil. Nature 426, 786–787 (2003).

    Article  CAS  Google Scholar 

  36. Murray, S. B. & Neville, A. C. The role of pH, temperature and nucleation in the formation of cholesteric liquid crystal spherulties from chitin and chitosan. Int. J. Biol. Macromol. 22, 137 (1998).

    Article  CAS  Google Scholar 

  37. Schmid, A. M. M. Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. Protoplasma 181, 43–60 (1994).

    Article  Google Scholar 

  38. Smith, M. A. The effect of heavy metals on the cytoplasmic fine structure of Skeletonema costatum (Bacillariophyta). Protoplasma 116, 14–23 (1983).

    Article  CAS  Google Scholar 

  39. Saboski, E. Effects of mercury and tin on frustular ultrastructure of the marine diatom Nitzschia liebethrutti. Water Air Soil Poll. 8, 461–466 (1977).

    CAS  Google Scholar 

  40. Corstjens, P. L. A. M. & Gonzales, E. L. Effects of nitrogen and phosphorus availability on the expression of the coccolith-vesicle v-ATPase (subunit C) of Pleurochrysis (Haptophyta). J. Phycol. 40, 82–87 (2004).

    Article  CAS  Google Scholar 

  41. Klaveness D. & Paasche E. in Biochemistry and Physiology of Protozoa 2nd edn, Vol. 1 (eds Hutner, S. H. & Levandowsky, M.) (Academic Press, New York, 1979).

    Google Scholar 

  42. Klaveness, D. & Guillard, R. R. L. The requirement for silicon in Synura petersenii (Chrysophyceae). J. Phycol. 11, 349–355 (1975).

    CAS  Google Scholar 

  43. Overton, J. Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kuhniella. J. Cell Biol. 29, 293–305 (1966).

    Article  CAS  Google Scholar 

  44. Parker, A. R. Conservative photonic crystals imply indirect transcription from genotype to phenotype. Rec. Res. Develop. Entomol. 5, 1–10 (2006).

    Google Scholar 

  45. Bath, J. & Turberfield. A. J. DNA nanomachines Nature. Nanotech. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  46. Parker, G. J. et al. Highly engineered mesoporous structures for optical processing. Phil. Trans. R. Soc. Lond. A 364, 189–199 (2006).

    Article  CAS  Google Scholar 

  47. Threadgold, L. T. The Ultrastructure of the Animal Cell (Pergamon Press, Oxford, 1967).

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Royal Society (University Research Fellowship), the Australian Research Council, Framework 6 of the European Union, and RCUK (Basic Technology Grant).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, A., Townley, H. Biomimetics of photonic nanostructures. Nature Nanotech 2, 347–353 (2007). https://doi.org/10.1038/nnano.2007.152

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing