Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux

Abstract

Biological nanochannels made from proteins play a central role in cellular signalling1,2,3,4,5,6,7,8,9. The rapid emergence of DNA nanotechnology in recent years10,11,12,13 has opened up the possibility of making similar nanochannels from DNA. Building on previous work on switchable DNA nanocompartment14,15, we have constructed complex DNA nanosystems to investigate the gating behaviour of these nanochannels. Here we show that DNA nanochannels can be gated by stress exerted by permeating solute particles at non-equilibrium states due to the high flexibility of the nanochannels. This novel gating mechanism results in tunable ratchet-like transport of solute particles through the nanochannels. A simple model that couples non-equilibrium channel gating with transport flux can quantitatively explain a number of the phenomena we observe. With only one set of model parameters, we can reproduce diverse gating behaviours, modulated by an inherent gating threshold. This work could lead to the development of new devices based on DNA nanochannels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental observations of ratchet-like thionine transport through DNA nanochannels.
Figure 2: Theoretical modelling of the gating dynamics of DNA channels.
Figure 3: Behaviour of the gating threshold C* in relation to Cmax.
Figure 4: Modulation of gating behaviours of DNA channels.

Similar content being viewed by others

References

  1. Hille, B. Ion Channels of Excitable Membranes (Sinauer Associates, Sunderland, 2001).

    Google Scholar 

  2. Gillespie, P. G. & Walker, R. G. Molecular basis of mechanosensory transduction. Nature 413, 194–202 (2001).

    Article  CAS  Google Scholar 

  3. Yellen, G. The voltage-gated potassium channels and their relatives. Nature 419, 35–42 (2002).

    Article  CAS  Google Scholar 

  4. MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew. Chem. Int. Edn 43, 4265–4277 (2004).

    Article  CAS  Google Scholar 

  5. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. & Martinac, B. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002).

    Article  CAS  Google Scholar 

  6. Goychuk, I. & Hänggi, P. Ion channel gating: a first-passage time analysis of the Kramers type. Proc. Natl Acad. Sci. USA 99, 3552–3556 (2002).

    Article  CAS  Google Scholar 

  7. Wiggins, P. & Phillips, R. Analytic models for mechanotransduction: Gating a mechanosensitive channel. Proc. Natl Acad. Sci. USA 101, 4071–4076 (2004).

    Article  CAS  Google Scholar 

  8. Markin, S. & Sachs, F. Thermodynamics of mechanosensitivity. Phys. Biol. 1, 110–124 (2004).

    Article  CAS  Google Scholar 

  9. VanDongen, A. M. J. K channel gating by an affinity-switching selectivity filter. Proc. Natl Acad. Sci. USA 101, 3248–3252 (2004).

    Article  CAS  Google Scholar 

  10. Seeman, N. C. DNA nanotechnology: Novel DNA constructions. Annu. Rev. Biophys. Biomol. Struct. 27, 225–248 (1998).

    Article  CAS  Google Scholar 

  11. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  12. Yan, H. Nucleic acid nanotechnology. Science 306, 2048–2049 (2004).

    Article  CAS  Google Scholar 

  13. Feldkamp, U. & Niemeyer, C. M. Rational design of DNA nanoarchitectures. Angew. Chem. Int. Edn 45, 1856–1876 (2006).

    Article  CAS  Google Scholar 

  14. Mao, Y. et al. Reversibly switchable DNA nanocompartment on surfaces. Nucleic Acids Res. 32, e144 (2004).

    Article  Google Scholar 

  15. Mao, Y. et al. Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH. Nucleic Acids Res. 35, e33 (2007).

    Article  Google Scholar 

  16. Mao, Y., Luo, C. & Ouyang, Q. Studies of temperature-dependent electronic transduction on DNA hairpin loop sensor. Nucleic Acids Res. 31, e108 (2003).

  17. Cherstvy, A. G., Kornyshev, A. A. & Leikin, S. Torsional deformation of double helix in interaction and aggregation of DNA. J. Phys. Chem. B 108, 6508–6518 (2004).

    Article  CAS  Google Scholar 

  18. Kornyshev, A. A. & Leikin, S. Sequence recognition in the paring of DNA duplexes. Phys. Rev. Lett. 86, 3666–3669 (2001).

    Article  CAS  Google Scholar 

  19. Wiggins, P. A. et al. High flexibility of DNA on short length scales probed by atomic force microscopy. Nature Nanotech. 1, 137–141 (2006).

    Article  CAS  Google Scholar 

  20. Chou, T. How fast do fluids squeeze through microscopic single-file pores? Phys. Rev. Lett. 80, 85–88 (1998).

    Article  CAS  Google Scholar 

  21. Hahn, K., Kärger, J. & Kukla, V. Single-file diffusion observation. Phys. Rev. Lett. 76, 2762–2765 (1996).

    Article  CAS  Google Scholar 

  22. Eisenberg, R. S., Klosek, M. M. & Schuss, Z. Diffusion as a chemical reaction: Stochastic trajectories between fixed concentrations. J. Chem. Phys. 102, 1767–1780 (1995).

    Article  CAS  Google Scholar 

  23. Nadler, B., Schuss, Z. & Singer, A. Langevin trajectories between fixed concentrations. Phys. Rev. Lett. 94, 218101 (2005).

    Article  CAS  Google Scholar 

  24. Kosztin, I. & Schulten, K. Fluctuation-driven molecular transport through an asymmetric membrane channel. Phys. Rev. Lett. 93, 238102 (2004).

    Article  Google Scholar 

  25. Chinappi, M. et al. Molecular dynamics simulation of ratchet motion in an asymmetric nanochannel. Phys. Rev. Lett. 97, 144509 (2006).

    Article  CAS  Google Scholar 

  26. Siwy, Z., Fuliński, A. & Martin, C. R. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

    Article  CAS  Google Scholar 

  27. Dekker, C. Solid-state nanopores. Nature Nanotech. 2, 209–215 (2007).

    Article  CAS  Google Scholar 

  28. Chou, T. & Lohse, D. Entropy-driven pumping in zeolites and biological channels. Phys. Rev. Lett. 82, 3552–3555 (1999).

    Article  CAS  Google Scholar 

  29. Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    Article  CAS  Google Scholar 

  30. Hamad-Schifferli, K., Schwartz, J. J., Santos, A. T., Zhang, S. & Jacobson, J. M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. G. Cherstvy for a critical review and helpful comments on the manuscript. This work is partly supported by the Ministry of Science and Technology of China, and the Chinese Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Y.M. designed the experiments, established the theoretical model and performed the numerical calculations. Y.M. and S.Y. carried out the experiments. Y.M. and Q.O. analysed the data. S.C. and Y.M. performed the simulation on the mean residence number of solute particle inside channels. Y.M. wrote the manuscript, and Q.O. and L.J. proofread it. Q.O. and L.J. supervised the research project.

Corresponding authors

Correspondence to Qi Ouyang or Lei Jiang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1–S14 (PDF 1810 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, Y., Chang, S., Yang, S. et al. Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux. Nature Nanotech 2, 366–371 (2007). https://doi.org/10.1038/nnano.2007.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.148

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing