Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Creation of multiple nanodots by single ions

Abstract

In the search to develop tools that are able to modify surfaces on the nanometre scale, the use of heavy ions with energies of several tens of MeV is becoming more attractive. Low-energy ions are mostly stopped by nuclei, which causes the energy to be dissipated over a large volume. In the high-energy regime, however, the ions are stopped by electronic excitations1,2,3, and the extremely local (10 nm3) nature of the energy deposition leads to the creation of nanosized ‘hillocks’ or nanodots under normal incidence4,5,6. Usually, each nanodot results from the impact of a single ion, and the dots are randomly distributed. Here we demonstrate that multiple, equally spaced dots, each separated by a few tens of nanometres, can be created if a single high-energy xenon ion strikes the surface at a grazing angle. By varying this angle, the number of dots, as well as their spacing, can be controlled.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM images of nanodots and chains on SrTiO3 created by irradiation.
Figure 2: Measured length l of chains as a function of angle of incidence.
Figure 3: DFT calculation of the electron density of SrTiO3.
Figure 4: Electron density and electronic stopping.

References

  1. Bethe, H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 397, 325–400 (1930).

    Article  Google Scholar 

  2. Bloch, F. Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Ann. Phys. 408, 285–320 (1933).

    Article  Google Scholar 

  3. Lindhard, J., Scharff, M. & Schiøtt, H. E. Range concepts and heavy ion ranges (Notes on atomic collisions, II). Mat. Fys. Medd. Dan. Vid. Selsk. 33, 1–42 (1963).

    Google Scholar 

  4. Neumann, R. Scanning probe microscopy of ion-irradiated materials. Nucl. Instrum. Methods B 151, 42–55 (1999).

    Article  CAS  Google Scholar 

  5. Bouffard, S., Cousty, J., Pennec, Y. & Thibaudau, F. STM and AFM observations of latent tracks. Radiat. Eff. Defects Solids 126, 225–228 (1993).

    Article  CAS  Google Scholar 

  6. Khalfaoui, N., Görlich, M., Müller, C., Schleberger, M. & Lebius, H. Latent tracks in CaF2 studied with atomic force microscopy in air and in vacuum. Nucl. Instrum. Methods B 245, 246–249 (2006).

    Article  CAS  Google Scholar 

  7. Li, R., Tang, Q., Yin, S. & Sato, T. Plasma catalysis for CO2 decomposition by using different dielectric materials. Fuel Processing Technol. 87, 617–622 (2006).

    Article  CAS  Google Scholar 

  8. Thevuthasan, S., Shutthanandan, V. & Zhang, Y. Applications of high energy ion beam techniques in environmental science: Investigation associated with glass and ceramic waste forms. J. Electr. Spectr. Rel. Phen. 150, 195–207 (2006).

    Article  CAS  Google Scholar 

  9. Jeon, S., Walker, F. J., Billman, C. A., McKee, R. A. & Hwang, H. Electrical characteristics of epitaxially grown SrTiO3 on silicon for metal–insulator–semiconductor gate dielectric applications. IEEE Electron. Device Lett. 24, 218–220 (2003).

    Article  CAS  Google Scholar 

  10. Först, C. J., Ashman, C. R., Schwarz, K. & Blöchl, P. E. The interface between silicon and a high-k oxide. Nature 427, 53–56 (2004).

    Article  Google Scholar 

  11. Brück, S. & Albrecht, J. Experimental evidence of the dominant role of low-angle grain boundaries for the critical current density in epitaxially grown YBa2Cu3O7–δ thin films. Phys. Rev. B 71, 174508 (2005).

  12. Zhang, M. et al. Patterned nanoclusters in the indium-doped SrTiO3 films. Appl. Phys. Lett. 85, 5899–5901 (2004).

    Article  CAS  Google Scholar 

  13. Szafraniak, I. et al. Ferroelectric epitaxial nanocrystals obtained by a self-patterning method. Appl. Phys. Lett. 83, 2211–2213 (2003).

    Article  CAS  Google Scholar 

  14. Albrecht, J. et al. Surface patterning of SrTiO3 by 30 keV ion irradiation. Surf. Sci. 547, L847–L852 (2003).

    Article  CAS  Google Scholar 

  15. Shin, H.-J. et al. Patterning of ferroelectric nanodot arrays using a silicon nitride shadow mask. Appl. Phys. Lett. 87, 113114 (2005).

    Article  Google Scholar 

  16. Ruzmetov, D. et al. Epitaxial magnetic perovskite nanostructures. Adv. Mater. 17, 2869–2872 (2005).

    Article  CAS  Google Scholar 

  17. Seitz, F. & Koehler, J. S. Displacement of atoms during irradiation, in Solid State Physics: Advances in Research and Applications 2, (eds Seitz, F. & Turnbull, D. ) 305–448 (1956).

    Google Scholar 

  18. Toulemonde, M., Dufour, C. & Paumier, E. Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors. Phys. Rev. B 46, 14362–14369 (1992).

    Article  CAS  Google Scholar 

  19. Morgan, D. V. & Chadderton, L. T. Fission fragment tracks in semiconducting layer structures. Phil. Mag. 17, 1135–1143 (1968).

    Article  CAS  Google Scholar 

  20. Fleischer, R. L., Price, P. B. & Walker, R. M. Ion explosion spike mechanism for formation of charged-particle tracks in solids. J. Appl. Phys. 36, 3645–3652 (1965).

    Article  CAS  Google Scholar 

  21. Klaumünzer, S. Ion tracks in quartz and vitreous silica. Nucl. Instrum. Methods B 225, 136–153 (2004).

    Article  Google Scholar 

  22. Shima, K., Ishihara, T., Miyoshi, T. & Mikumo, T. Equilibrium charge-state distributions of 35–146-MeV Cu ions behind carbon foils. Phys. Rev. A 28, 2162–2168 (1983).

    Article  CAS  Google Scholar 

  23. Shima, K., Kuno, N. & Yamanouchi, M. Systematics of equilibrium charge distributions of ions passing through a carbon foil over the ranges Z = 4–92 and E = 0.02–6 MeV/u. Phys. Rev. A 40, 3557–3570 (1989).

    Article  CAS  Google Scholar 

  24. Toulemonde, M., Dufour, C. & Paumier, E. The ion–matter interaction with swift heavy ions in the light of inelastic thermal spike model. Acta Physica Polonica A 109, 311–322 (2006).

    Article  CAS  Google Scholar 

  25. Meftah, A. et al. Track formation in SiO2 quartz and the thermal-spike mechanism. Phys. Rev. B 49, 12457–12463 (1994).

    Article  CAS  Google Scholar 

  26. Szenes, G. General features of latent track formation in magnetic insulators irradiated with swift heavy ions. Phys. Rev. B 51, 8026–8029 (1995).

    Article  CAS  Google Scholar 

  27. Carvalho, A. M. J. F. et al. Discontinuous ion tracks on silicon oxide on silicon surfaces after grazing-angle heavy ion irradiation. Appl. Phys. Lett. 90, 073116 (2007).

    Article  Google Scholar 

  28. Ziegler, J. F. & Biersack, J. P. The stopping and range of ions in matter; http://www.SRIM.org, Version 2003.26.

  29. Horcas, I. et al. A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instr. 78, 013705 (2007).

  30. The abinit code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors. http://www.abinit.org

  31. Fuchs, M. & Scheffler, M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput. Phys. Commun. 119, 67–98 (1999).

    Article  CAS  Google Scholar 

  32. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  33. Lindhard, J. & Scharff, M. Energy dissipation by ions in the kev region. Phys. Rev. 124, 128–130 (1961).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the DFG (SFB 616: Energy dissipation at surfaces; and SFB 445: Nanoparticles from the Gas Phase) by GANIL (Project S18), and the sixth framework programme of the EU (EURONS: RII3-CT-2004-506065) is gratefully acknowledged. We thank P. and F. Jeanjean for their help with the experiment and A. Reichert for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and H.L. conceived and designed the experiment. E.A., T.P., M.K., I.M., H.L. and M.S. performed the experiment and analysed and interpreted the data. E.A., R.M. and A.D. performed the theoretical calculations. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Marika Schleberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akcöltekin, E., Peters, T., Meyer, R. et al. Creation of multiple nanodots by single ions. Nature Nanotech 2, 290–294 (2007). https://doi.org/10.1038/nnano.2007.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing