Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

DNA nanomachines

Abstract

We are learning to build synthetic molecular machinery from DNA. This research is inspired by biological systems in which individual molecules act, singly and in concert, as specialized machines: our ambition is to create new technologies to perform tasks that are currently beyond our reach. DNA nanomachines are made by self-assembly, using techniques that rely on the sequence-specific interactions that bind complementary oligonucleotides together in a double helix. They can be activated by interactions with specific signalling molecules or by changes in their environment. Devices that change state in response to an external trigger might be used for molecular sensing, intelligent drug delivery or programmable chemical synthesis. Biological molecular motors that carry cargoes within cells have inspired the construction of rudimentary DNA walkers that run along self-assembled tracks. It has even proved possible to create DNA motors that move autonomously, obtaining energy by catalysing the reaction of DNA or RNA fuels.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Self-assembly of a nanometre-scale object.
Figure 2: A DNA nanomachine driven by repeated sequential addition of DNA control strands.
Figure 3: DNA nanomachines that execute directional stepwise movement along linear tracks.
Figure 4: Hairpin loops to fuel DNA motors81.
Figure 5: Scheme for a hybridization-powered molecular motor.

References

  1. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    CAS  Google Scholar 

  2. Chen, J. H. & Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991).

    CAS  Google Scholar 

  3. Zhang, Y. W. & Seeman, N. C. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

    CAS  Google Scholar 

  4. Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

    CAS  Google Scholar 

  5. Goodman, R. P. et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310, 1661–1665 (2005).

    CAS  Google Scholar 

  6. Robinson, B. H. & Seeman, N. C. The design of a biochip: a self-assembling molecular-scale memory device. Protein Eng. 1, 295–300 (1987).

    CAS  Google Scholar 

  7. Keren, K. et al. Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002).

    CAS  Google Scholar 

  8. Heilemann, M. et al. Multistep energy transfer in single molecular photonic wires. J. Am. Chem. Soc. 126, 6514–6515 (2004).

    CAS  Google Scholar 

  9. Niemeyer, C. M., Koehler, J. & Wuerdermann, C. DNA-directed assembly of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. ChemBioChem 3, 242–245 (2002).

    CAS  Google Scholar 

  10. Cate, J. H. et al. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 273, 1678–1685 (1996).

    CAS  Google Scholar 

  11. DeGrado, W. F., Summa, C. M., Pavone, V., Nastri, F. & Lombardi, A. De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999).

    CAS  Google Scholar 

  12. Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

    CAS  Google Scholar 

  13. Pohl, F. M. & Joyin, T. M. Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J. Mol. Biol. 67, 375–396 (1972).

    CAS  Google Scholar 

  14. Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical device based on the B-Z transition of DNA. Nature 397, 144–146 (1999).

    CAS  Google Scholar 

  15. Stryer, L. & Haugland, R. P. Energy transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA 58, 719–726 (1967).

    CAS  Google Scholar 

  16. Yang, X., Vologodskii, A. V., Liu, B., Kemper, B. & Seeman, N. C. Torsional control of double-stranded DNA branch migration. Biopolymers 45, 69–83 (1998).

    CAS  Google Scholar 

  17. Holliday, R. A mechanism for gene conversion in fungi. Genet. Res. 5, 282–304 (1964).

    Google Scholar 

  18. Gehring, K., Leroy, J. L. & Gueron, M. A tetrameric DNA structure with protonated cytosine-cytosine base-pairs. Nature 363 561–565 (1993).

    CAS  Google Scholar 

  19. Aboul-ela, F., Murchie, A. I. H. & Lilley, D. M. J. NMR study of parallel-stranded tetraplex formation by the hexadeoxynucleotide d(TG4T). Nature 360, 280–282 (1992).

    CAS  Google Scholar 

  20. Liu, D. & Balasubramanian, S. A proton-fuelled DNA nanomachine. Angew. Chem. Int. Edn 42, 5734–5736 (2003).

    CAS  Google Scholar 

  21. Liu, D. et al. A reversible pH-driven DNA nanoswitch array. J. Am. Chem. Soc. 128, 2067–2071 (2006).

    CAS  Google Scholar 

  22. Liedl, T. & Simmel, F. C. Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett. 5, 1894–1898 (2005).

    CAS  Google Scholar 

  23. Liedl, T., Olapinksi, M. & Simmel, F. C. A surface-bound DNA switch driven by a chemical oscillator. Angew. Chem. Int. Edn 45, 5007–5010 (2006).

    CAS  Google Scholar 

  24. Shu, W. et al. DNA molecular motor driven micromechanical cantilever arrays. J. Am. Chem. Soc. 127, 17054–17060 (2005).

    CAS  Google Scholar 

  25. Baller, M. K. et al. A cantilever array-based artificial nose. Ultramicroscopy 82 1–9 (2001).

    Google Scholar 

  26. Chen, Y., Lee, S.-H. & Mao, C. A DNA nanomachine based on a duplex-triplex transition. Angew. Chem. Int. Edn 43, 5335–5338 (2004).

    CAS  Google Scholar 

  27. Brucale, M., Zuccheri, G. & Samori, B. The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org. Biomol. Chem. 3, 575–577 (2005).

    CAS  Google Scholar 

  28. Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  Google Scholar 

  29. Yurke, B. & Mills, A. P. Jr. Using DNA to power nanostructures. Genetic Programming and Evolvable Machines 4, 111–122 (2003).

    Google Scholar 

  30. Muller, B. K., Reuter, A., Simmel, F. C. & Lamb, D. C. Single-pair FRET characterization of DNA tweezers. Nano Lett. 6 2814–2820 (2006).

    Google Scholar 

  31. Simmel, F. C. & Yurke, B. Using DNA to construct and power a nanoactuator. Phys. Rev. E 63, 041913 (2001).

    CAS  Google Scholar 

  32. Simmel, F. C. & Yurke, B. A DNA-based molecular device switchable between three distinct mechanical states. Appl. Phys. Lett. 80, 883–885 (2002).

    CAS  Google Scholar 

  33. Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    CAS  Google Scholar 

  34. Ding, B. & Seeman, N. C. Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314, 1583–1585.

  35. Feng, L., Park, H., Reif, J. H. & Yan, H. A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Edn 42, 4342–4346 (2003).

  36. Hazarika, P., Ceyhan, B. & Niemeyer, C. M. Reversible switching of DNA-gold nanoparticle aggregation. Angew. Chem. Int. Edn 43, 6469–6471 (2004).

    CAS  Google Scholar 

  37. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Google Scholar 

  38. Li, J. J. & Tan, W. A single DNA molecule nanomotor. Nano Lett. 2, 315–318 (2002).

    CAS  Google Scholar 

  39. Alberti, P. & Mergny, J.-L. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl Acad. Sci. USA 100, 1569–1573 (2003).

    CAS  Google Scholar 

  40. Wang, Y. Zhang, Y. & Ong, N. P. Speeding up a single-molecule DNA device with a simple catalyst. Phys Rev. E 72, 051918 (2005).

    Google Scholar 

  41. Zhong, H. & Seeman, N. C. RNA used to control a rotary device. Nano Lett. 6, 2899–2903 (2006).

    CAS  Google Scholar 

  42. Dittmer, W. U. & Simmel, F. C. Transcriptional control of DNA-based nanomachines. Nano Lett. 4, 689–691 (2004).

    CAS  Google Scholar 

  43. Dittmer, W. U., Kempter, S., Radler, J. O. & Simmel, F. C. Using gene regulation to program DNA-based molecular devices. Small 7, 709–712 (2005).

    Google Scholar 

  44. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS  Google Scholar 

  45. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  Google Scholar 

  46. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).

    CAS  Google Scholar 

  47. Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006).

    Google Scholar 

  48. Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Edn 45, 7414–7417 (2006).

    CAS  Google Scholar 

  49. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping byoptical trapping interferometry. Nature 365, 721–727 (1993).

    CAS  Google Scholar 

  50. Kuo, S. C. & Sheetz, M. P. Force of single kinesin groups measured with optical tweezers. Science 260, 232–234 (1993).

    CAS  Google Scholar 

  51. Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin group mechanics: piconewton forces and nanometre steps. Nature 368, 113–119 (1994).

    CAS  Google Scholar 

  52. Ishijima, A. et al. Single-molecule analysis of the actomyosin motor using nano-manipulation. Biochem. Biophys. Res. Commun. 199, 1057–1063 (1994).

    CAS  Google Scholar 

  53. Shin, J.-S. & Pierce, N. A. Rewritable memory by controllable nanopatterning of DNA. Nano Lett. 4 905–909 (2004).

    CAS  Google Scholar 

  54. Shin, J.-S. & Pierce, N. A. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

    CAS  Google Scholar 

  55. Tian, Y. & Mao, C. A pair of DNA circles continuously rolls against each other. J. Am. Chem. Soc. 126, 11410–11411 (2004).

    CAS  Google Scholar 

  56. Sherman, W. B. & Seeman, N. C. A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004).

    CAS  Google Scholar 

  57. Mitchell, J. C., Harris, J. R., Malo, J., Bath, J. & Turberfield, A. J. Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 126, 16342–16343 (2004).

    CAS  Google Scholar 

  58. Rothemund, P. W. K. et al. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352 (2004).

    CAS  Google Scholar 

  59. Liu, D., Park, S. H., Reif, J. H. & LaBean, T. H. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl Acad. Sci. USA 101, 717–722 (2004).

    CAS  Google Scholar 

  60. Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    CAS  Google Scholar 

  61. Lubrich, D., Bath, J. & Turberfield, A. J. Design and assembly of double-crossover linear arrays of micrometre length using rolling circle replication. Nanotechnology 16, 1574–1577 (2005).

    CAS  Google Scholar 

  62. Beyer, S., Nickels, P. & Simmel, F. C. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Lett. 5, 719–722 (2005).

    CAS  Google Scholar 

  63. Deng, Z., Tian, Y., Lee, S. H., Ribbe, A. E. & Mao, C. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew. Chem. Int. Edn 44, 3582–3585 (2005).

    CAS  Google Scholar 

  64. Rothermund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 298–302 (2006).

    Google Scholar 

  65. Higashi-Fujime, S. et al. The fastest actin-based motor protein from the green algae, Chara, and its distinct mode of interaction with actin. FEBS Lett. 375, 151–154 (1995).

    CAS  Google Scholar 

  66. Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989).

    CAS  Google Scholar 

  67. Vale, R. D. & Milligan, R. A. The way things move: Looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    CAS  Google Scholar 

  68. Santoro, S. W. & Joyce, G. F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

    CAS  Google Scholar 

  69. Chen, Y., Wang, M. & Mao, C. An autonomous DNA nanomotor powered by a DNA enzyme. Angew. Chem. Int. Edn 43, 3554–3557 (2004).

    CAS  Google Scholar 

  70. Tian, Y., He, Y., Peng, Y. & Mao, C. A DNA enzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Edn 44, 4355–4358 (2005).

    CAS  Google Scholar 

  71. Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn 44, 4358–4361 (2005).

    CAS  Google Scholar 

  72. Heiter, D. F., Lunnen, K. D. & Wilson, G. G. Site-specific DNA-nicking mutants of the heterodimeric restriction endonuclease R.BbvCI. J. Mol. Biol. 348, 631–640 (2005).

    CAS  Google Scholar 

  73. Bellamy, S. R. W. et al. Cleavage of individual DNA strands by the different subunits of the heterodimeric restriction endonuclease BbvCI. J. Mol. Biol. 348, 641–653 (2005).

    CAS  Google Scholar 

  74. Reif, J. H. The design of autonomous DNA nanomechanical devices: Walking and rolling DNA. Lect. Notes Comput. Sc. 2568, 22–37 (2003).

    Google Scholar 

  75. Yin, P., Turberfield, A. J., Sahu, S. & Reif, J. H. Designs for autonomous unidirectional walking DNA devices. Lect. Notes Comput. Sc. 3384, 410–425 (2005).

    Google Scholar 

  76. Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA walker that moves autonomously along a DNA track. Angew. Chem. Int. Edn 43, 4906–4911 (2004).

    CAS  Google Scholar 

  77. Benenson Y. et al. Programmable and autonomous computing machine made of biomolecules. Nature 414 430–434 (2001).

    CAS  Google Scholar 

  78. Yin, P., Sahu, S., Turberfield, A. J. & Reif, J. H. Design of autonomous DNA cellular automata. Lect. Notes Comput. Sc. 3892, 399–416 (2006).

    Google Scholar 

  79. Alberty, R. A. & Goldbert, R. N. Standard Thermodynamic Formation Properties for the Adenosine 5′-Triphosphate Series. Biochemistry 31, 10610–10615 (1992).

    CAS  Google Scholar 

  80. SantaLucia, J. A unified view of polymer, dumbell, and oligonucleotide nearest neighbour thermodynamics. Proc. Natl Acad. Sci. USA. 95, 1460–1465 (1998).

    CAS  Google Scholar 

  81. Turberfield, A. J. et al. DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

    CAS  Google Scholar 

  82. Bois, J. S. et al. Topological constraints in nucleic acid hybridization kinetics. Nucleic Acids Res. 33, 4090–4095 (2005).

    CAS  Google Scholar 

  83. Dirks, R. M. & Pierce, N. A. (2004). Triggered amplification by hybridization chain reaction. Proc. Natl Acad. Sci. USA 101, 15275–1 5278.

    CAS  Google Scholar 

  84. Green, S. J., Lubrich, L. & Turberfield, A. J. DNA hairpins: fuel for autonomous DNA devices. Biophys. J. 91, 2966–2975 (2006).

    CAS  Google Scholar 

  85. Seelig, G., Yurke, B. & Winfree, E. DNA hybridization catalysts and catalyst circuits. Lect. Notes Comput. Sc. 3384, 329–343 (2005).

    Google Scholar 

  86. Seelig, G., Yurke, B. & Winfree, E. Catalysed relaxation of a metastable fuel. J. Am. Chem. Soc. 128, 12211–12220 (2006).

    CAS  Google Scholar 

  87. Kool, E. T. Replacing the nucleobases of DNA with designer molecules. Acc. Chem. Res. 35, 936–943 (2002).

    CAS  Google Scholar 

  88. Nielsen, P. E., Egholm M., Berg R. H. & Buchardt, O. Sequence-selective recognition of a DNA by strand displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

    CAS  Google Scholar 

  89. Koshkin, A. A. et al. Synthesis of the adenin, cytosine, guanine, 5-methylcytosine, thimine and uracil bicyclonucleotide monomers, oligomerization, and unprecedented nucleic acid recognition. Tetrahedron 54, 3607–3630 (1998).

    CAS  Google Scholar 

  90. Smith, S. B., Finzi, L. & Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258, 1122–1126 (1992).

    CAS  Google Scholar 

  91. Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    CAS  Google Scholar 

  92. Seeman, N. C. De novo design of sequences for nucleic-acid structural engineering. J. Biomol. Struc. Dyn. 8, 573–581 (1990).

    CAS  Google Scholar 

  93. Dirks, R. M., Lin, M., Winfree, E. & Pierce, N. A. Paradigms for computational nucleic acid design. Nucleic Acids Res. 32, 1392–1403 (2004).

    CAS  Google Scholar 

  94. Goodman, R. P. NANEV: a program employing evolutionary methods for the design of nucleic acid nanostructures. Biotechniques 38, 548–550 (2005).

    CAS  Google Scholar 

  95. Tashiro, R. & Sugiyama, H. A nanothermometer based on the different stackings of B- and Z-DNA. Angew. Chem. Int. Edn 42, 6018–6020 (2003).

    CAS  Google Scholar 

  96. Shen, W., Bruist, M. F., Goodman, S. D. & Seeman, N. C. A protein-driven DNA device that measures the excess binding energy of proteins that distort DNA. Angew. Chem. Int. Edn 43, 4750–4752 (2004).

    CAS  Google Scholar 

  97. Tyagi, S. & Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–308 (1996).

    CAS  Google Scholar 

  98. Wilson, D.W. & Szostak, J. W. In vitro selection of functional nucleic acids. Ann. Rev. Biochem. 68, 611–648 (1999).

    CAS  Google Scholar 

  99. Dittmer, W. U., Reuter, A. & Simmel, F. C. A DNA-based machine that can cyclically bind and release thrombin. Angew. Chem. Int. Edn 43, 3550–3553 (2004).

    CAS  Google Scholar 

  100. Rusconi, C. P. et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419, 90–94 (2002).

    CAS  Google Scholar 

  101. Beyer, S. & Simmel, F. C. A modular DNA signal translator for the controlled release of a protein by an aptamer. Nucleic Acids Res. 34, 1581–1587 (2006).

    CAS  Google Scholar 

  102. Chelyapov, N. Allosteric aptamers controlling a signal amplification cascade allow visual detection of molecules at picomolar concentration. Biochemistry 45, 2461–2466 (2006).

    CAS  Google Scholar 

  103. Liu, J. & Lu, Y. A colorimetric lead biosensor using DNA enzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642–6643 (2003).

    CAS  Google Scholar 

  104. Porta H. & Lizardi, P. M. An allosteric hammerhead ribozyme. Biotechnology 13, 161–164 (1995).

    CAS  Google Scholar 

  105. Stojanovic, M. N., de Prada, P. & Landry, D. W. Catalytic molecular beacons. ChemBioChem 2, 411–415 (2001).

    CAS  Google Scholar 

  106. Robertson, M. P. & Ellington, A. D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nature Biotechnol. 17, 62–66 (1999).

    CAS  Google Scholar 

  107. Weizmann, Y. et al. A virus spotlighted by an autonomous DNA machine. Angew. Chem. Int. Edn 45, 7384–7388 (2006).

    CAS  Google Scholar 

  108. Van Ness, J., Van Ness, L. K. & Galas, D. J. Isothermal reactions for the amplification of oligonucleotides. Proc. Natl Acad. Sci USA 100, 4504–4509 (2003).

    CAS  Google Scholar 

  109. Stojanovic, M. N., Mitchell, T. E. & Stefanovic, D. Deoxyribozyme-based logic gates. J. Am. Chem. Soc. 124, 3555–3561 (2002).

    CAS  Google Scholar 

  110. Penchovsky, R. & Breaker, R. R. Computational design and experimental testing of oligonucleotide-sensing allosteric ribozyme. Nature Biotechnol. 23, 1424–1433 (2005).

    CAS  Google Scholar 

  111. Stojanovic, M. N. & Stefanovic, D. Deoxyribosome-based half adder. J. Am. Chem. Soc. 125 6673–6676 (2002).

    Google Scholar 

  112. Stojanovic, M. N. & Stefanovic, D. A deoxyribozyme-based molecular automaton. Nature Biotechnol. 21, 1069–1074 (2003).

    CAS  Google Scholar 

  113. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    CAS  Google Scholar 

  114. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. An autonomous molecular computer for logical control of gene expression. Nature 429, 423–428 (2004).

    CAS  Google Scholar 

  115. Isaacs, F. J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnol. 22, 841–847 (2005).

    Google Scholar 

  116. Bayer, T. S. & Smolke, C. D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnol. 23, 337–343 (2005).

    CAS  Google Scholar 

  117. Halpin, D. R. & Harbury, P. R. DNA display I: Sequence-encoded routing of DNA populations. PloS Biol. 2, 1015–1021 (2004).

    CAS  Google Scholar 

  118. Halpin, D. R. & Harbury, P. R. DNA display II: Genetic manipulation of combinatorial chemistry libraries for small-molecule evolution. PloS Biol. 2, 1022–1030 (2004).

    CAS  Google Scholar 

  119. Liao, S. & Seeman, N. C. Translation of DNA signals into polymer assembly instructions. Science 306, 2072–2074 (2004).

    CAS  Google Scholar 

  120. Gartner, Z. J. & Liu, D. R. The generality of DNA-templated synthesis as a basis for evolving non-natural small molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

    CAS  Google Scholar 

  121. Snyder, T. M. & Liu, D. R. Ordered multistep synthesis in a single solution directed by DNA templates. Angew. Chem. Int. Edn 44, 7379–7382 (2005).

    CAS  Google Scholar 

  122. Gothelf, K. V., Thomsen, A., Nielsen, M., Clo, E., & Brown, R. S. Modular DNA-programmed assembly of linear and branched conjugated nanostructures. J. Am. Chem. Soc. 126, 1044–1046 (2004).

    CAS  Google Scholar 

  123. Eckardt, L. H. et al. DNA nanotechnology: chemical copying of connectivity. Nature 420, 286 (2002).

    CAS  Google Scholar 

  124. Chen, Y. & Mao, C. Reprogramming DNA-directed reactions on the basis of a DNA conformational change. J. Am. Chem. Soc. 126, 13240–13241 (2004).

    CAS  Google Scholar 

  125. Chhabra, R., Sharma, J., Liu, Y. & Yan, H. Addressable molecular tweezers for DNA-templated coupling reactions. Nano Lett. 6, 978–983 (2006).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the UK research councils BBSRC, EPSRC and MRC, and by the MoD through the UK Bionanotechnology IRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Turberfield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bath, J., Turberfield, A. DNA nanomachines. Nature Nanotech 2, 275–284 (2007). https://doi.org/10.1038/nnano.2007.104

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.104

Further reading

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research