Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Torsional electromechanical quantum oscillations in carbon nanotubes

Abstract

Carbon nanotubes1,2 can be distinctly metallic or semiconducting depending on their diameter and chirality3. Here we show that continuously varying the chirality by mechanical torsion4 can induce conductance oscillations, which can be attributed to metal–semiconductor periodic transitions. The phenomenon is observed in multiwalled carbon nanotubes, where both the torque5 and the current are shown to be carried predominantly by the outermost wall6,7. The oscillation period with torsion is consistent with the theoretical shifting8 of the corners of the first Brillouin zone of graphene across different sub-bands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Carbon nanotubes could be ideal torsional springs for nanoscopic pendulums4,9,10, because electromechanical detection of motion could replace the microscopic detection techniques used at present. Our experiments indicate that carbon nanotubes could be used as electronic sensors of torsional motion in nanoelectromechanical systems11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanotube-based torsional NEMS for the study of torsional electromechanics of carbon nanotubes.
Figure 2: Independent characterization of torsional mechanics and transport properties.
Figure 3: Torsional electromechanical measurements for three representative devices A, B and C.
Figure 4: Theoretical model for the torsional electromechanical quantum oscillations in carbon nanotubes.

Similar content being viewed by others

References

  1. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  Google Scholar 

  2. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon nanotubes (Springer, Berlin, 2001).

    Book  Google Scholar 

  3. Mintmire, J. W., Dunlapp, B. I. & White, C. T. Are fullerene tubules metallic Phys. Rev. Lett. 68, 631–634 (1992).

    Article  Google Scholar 

  4. Joselevich, E. Twisting nanotubes: From torsion to chirality. ChemPhysChem 7, 1405–1407 (2006).

    Article  Google Scholar 

  5. Williams, P. A. et al. Torsional response and stiffening of individual multiwalled carbon nanotubes. Phys. Rev. Lett. 89, 255502 (2002).

    Article  Google Scholar 

  6. Bachtold, A. et al. Aharonov–Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999).

    Article  Google Scholar 

  7. Poncharal, P., Berger, C., Yi, Y., Wang, Z. L. & de Heer, W. A. Room temperature ballistic conduction in carbon nanotubes. J. Phys. Chem. B 106, 12104–12118 (2002).

    Article  Google Scholar 

  8. Yang, L. & Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 85, 154–157 (2000).

    Article  Google Scholar 

  9. Papadakis, S. J. et al. Resonant oscillators with carbon-nanotube torsion springs. Phys. Rev. Lett. 93, 146101 (2004).

    Article  Google Scholar 

  10. Meyer, J. C., Paillet, M. & Roth, S. Single-molecule torsional pendulum. Science 309, 1539–1541 (2005).

    Article  Google Scholar 

  11. Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–1535 (2000).

    Article  Google Scholar 

  12. Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    Article  Google Scholar 

  13. Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y., Cheung, C. L. & Lieber, C. M. Carbon nanotube-based non-volatile random access memory for molecular computing. Science 289, 94–97 (2000).

    Article  Google Scholar 

  14. Maiti, A. Bandgap engineering with strain. Nature Mater. 2, 440–442 (2003).

    Article  Google Scholar 

  15. Tombler, T. W. et al. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769–772 (2000).

    Article  Google Scholar 

  16. Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).

    Article  Google Scholar 

  17. Gómez-Navarro, C., de Pablo, P. J. & Gómez-Herrero, J. Radial electromechanical properties of carbon nanotubes. Adv. Mater. 16, 549–552 (2004).

    Article  Google Scholar 

  18. Semet, V. et al. Reversible electromechanical characteristics of multiwalled carbon nanotubes. Appl. Phys. Lett. 87, 223103 (2005).

    Article  Google Scholar 

  19. Rochefort, A., Avouris, P., Lesage, F. & Salahub, D. R. Electrical and mechanical properties of distorted carbon nanotubes. Phys. Rev. B 60, 13824–13830 (1999).

    Article  Google Scholar 

  20. Bailey, S. W. D., Tománek, D., Kwon, Y.-K. & Lambert, C. J. Giant magneto-conductance in twisted carbon nanotubes. Europhys. Lett. 59, 75–80 (2002).

    Article  Google Scholar 

  21. Liang, W. et al. Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

    Article  Google Scholar 

  22. Buitelaar, M. R., Bachtold, A., Nussbaumer, T., Iqbal, M. & Schönenberger, C. Multiwall carbon nanotubes as quantum dots. Phys. Rev. Lett. 88, 156801 (2002).

    Article  Google Scholar 

  23. Fennimore, A. M. et al. Rotational actuators based on carbon nanotubes. Nature 424, 408–410 (2003).

    Article  Google Scholar 

  24. Bourlon, B., Glattli, D. C., Miko, C., Forró, L. & Bachtold, A. Carbon nanotube based bearing for rotational motions. Nano Lett. 4, 709–712 (2004).

    Article  Google Scholar 

  25. Büttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985).

    Article  Google Scholar 

  26. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article  Google Scholar 

  27. Stojetz, B., Miko, C., Forró, L.. & Strunk, C. Effect of band structure on quantum interference in multiwall carbon nanotubes. Phys. Rev. Lett. 94, 186802 (2005).

    Article  Google Scholar 

  28. Roche, S., Triozon, F., Rubio, A. & Mayou, D. Conduction mechanisms and magnetotransport in multiwalled carbon nanotubes. Phys. Rev. B 64, 121401 (2001).

    Article  Google Scholar 

  29. Sawada, Y. & Shindo, A. Torsional properties of carbon fibers. Carbon 30, 619–629 (1992).

    Article  Google Scholar 

  30. Ertekin, E. & Chrzan, D. C. Ideal torsional strengths and stiffnesses of carbon nanotubes. Phys. Rev. B 72, 045425 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Shahar, A. Stern, Y. Oreg and L. Kronik for helpful discussions, and A. Yoffe, K. Gartsman, and O. Yeger for assistance with the clean-room and electron-microscopy facilities. This research was supported by the Israel Science Foundation, the Kimmel Center for Nanoscale Science, and the Djanogly and Alhadeff foundations. E.J. holds the Victor Erlich Career Development Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Joselevich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods, figures S1-S2, tables S1-S2 and movie legend (PDF 473 kb)

Supplementary Information

Supplementary movie (MOV 1857 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen-Karni, T., Segev, L., Srur-Lavi, O. et al. Torsional electromechanical quantum oscillations in carbon nanotubes. Nature Nanotech 1, 36–41 (2006). https://doi.org/10.1038/nnano.2006.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing