Making molecular machines work

Abstract

In this review we chart recent advances in what is at once an old and very new field of endeavour — the achievement of control of motion at the molecular level including solid-state and surface-mounted rotors, and its natural progression to the development of synthetic molecular machines. Besides a discussion of design principles used to control linear and rotary motion in such molecular systems, this review will address the advances towards the construction of synthetic machines that can perform useful functions. Approaches taken by several research groups to construct wholly synthetic molecular machines and devices are compared. This will be illustrated with molecular rotors, elevators, valves, transporters, muscles and other motor functions used to develop smart materials. The demonstration of molecular machinery is highlighted through recent examples of systems capable of effecting macroscopic movement through concerted molecular motion. Several approaches to illustrate how molecular motor systems have been used to accomplish work are discussed. We will conclude with prospects for future developments in this exciting field of nanotechnology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: What makes a molecule a machine?
Figure 2: Examples of non-directionally controlled molecular rotors.
Figure 3: Chemically fuelled autonomously moving objects.
Figure 4: Rotary molecular motors in which a sequence of steps results in a full 360° unidirectional movement around the central axis.
Figure 5: Light-driven unidirectional rotary motors in action.
Figure 6: Synthetic molecular systems designed to achieve translational motion.
Figure 7: Systems designed as multicomponent mechanical machines.
Figure 8: Two approaches to the opening and closing of nanovalves using molecular switches.

References

  1. 1

    Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 5th edn (W. H. Freeman, New York, 2006).

    Google Scholar 

  2. 2

    Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Schliwa, M. (ed.) Molecular Motors (Wiley-VCH, Weinheim, Germany 2003).

    Google Scholar 

  4. 4

    Boyer, P. D. Molecular motors: What makes ATP synthase spin? Nature 402, 247–249 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Bray, D. Cell Movements: From Molecules to Motility (Garland, New York, 1992).

    Google Scholar 

  6. 6

    Hess, H. & Bachand, G. D. Biomolecular motors. Nanotoday 8, 22–29 (2005).

    Google Scholar 

  7. 7

    Hess, H. & Vogel, V. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev. Mol. Biotechnol. 82, 67–85 (2001).

    CAS  Article  Google Scholar 

  8. 8

    Yan, H., Zhang, X. P., Shen, Z. Y. & Seeman, N. C. A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn 44, 4358–4361 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Alberti P. & Mergny J. L. DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl Acad. Sci. USA 100, 1569–1573 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Abraham, R. T. & Tibbetts, R. S. Cell biology: Guiding ATM to broken DNA. Science 308, 510–511 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Feynman, R. P. The Pleasure of Finding Things Out (Perseus Books: Cambridge, Massachusetts, 1999). There's Plenty of Room at the Bottom www.its.caltech.edu/~feynman

  13. 13

    Davis, A. P. Synthetic molecular motors. Nature 401, 120–121 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Harada, A. Cyclodextrin-based molecular machines. Acc. Chem. Res. 34, 456–464 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Amendola, V., Fabbrizzi, L., Mangano, C. & Pallavicini, P. Molecular machines based on metal ion translocation. Acc. Chem. Res. 34, 488–493 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Collin, J.-P., Dietrich-Buchecker, C., Gavina, P., Jimenez-Molero, M. C. & Sauvage, J.-P. Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Sauvage, J.-P. (ed.) Molecular Machines and Motors (Springer, Berlin, 2001).

    Google Scholar 

  18. 18

    Feringa, B. L. In control of motion: from molecular switches to molecular motors. Acc. Chem. Res. 34, 504–513 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Feringa, B. L., van Delden, R. A., Koumura, N. & Geertsema, E. M. Chiroptical molecular switches. Chem. Rev. 100, 1789–1816 (2001).

    Article  CAS  Google Scholar 

  20. 20

    Stoddart, J. F. Molecular machines. Acc. Chem. Res. 34, 410–411 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Feringa, B. L. (ed.) Molecular Switches (Wiley-VCH, Weinheim, Germany, 2001).

    Google Scholar 

  22. 22

    Easton, C. J., Lincoln, S. F., Barr, L. & Onagi, H. Molecular reactors and machines: How useful are molecular mechanical devices? Chem. Eur. J. 10, 3120–3128 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Ozin, G. A., Manners, I., Fournier-Bidoz, S. & Arsenault, A. Dream machines. Adv. Mater. 17, 3011–3018 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Soanes, C. & Stevenson, A. (eds) Oxford Dictionary of English (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  25. 25

    Astumian, R. D. Making molecules into motors. Sci. Am. 285, 45–51 (2001).

    Article  Google Scholar 

  26. 26

    Astumian, R. D. Thermodynamics and kinetics of a brownian motor. Science 276, 917–922 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Rozenbaum, V. M., Yang, D.-Y., Lin, S. H. & Tsong, T. Y. Catalytic wheel as a brownian motor. J. Phys. Chem. B 108, 15880–15889 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Whitesides, G. M. The once and future nanomachine. Biology outmatches futurists' most elaborate fantasies for molecular robots. Sci. Am. 285, 78–84 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: Ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Siegel, J. Inventing the nanomolecular wheel. Science 310, 63–64 (2005).

    CAS  Article  Google Scholar 

  31. 31

    Rapenne, G. Synthesis of technomimetic molecules: towards rotation control in single molecular machines and motors. Org. Biomol. Chem. 3, 1165–1169 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Garcia-Garibay, M. A. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure. Proc. Natl Acad. Sci. USA 102, 10771–10776 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Khuong, T.-A. V., Zepeda, G., Ruiz, R., Khan, S. I. & Garcia-Garibay, M. A. Molecular compasses and gyroscopes: Engineering molecular crystals with fast internal rotation. Cryst. Growth Des. 4, 15–18 (2004).

    CAS  Article  Google Scholar 

  34. 34

    Caskey, D. C. & Michl, J. Toward self-assembled surface-mounted prismatic altitudinal rotors. A test case: trigonal and tetragonal prisms. J. Org. Chem. 70, 5442–5448 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Horinek, D. & Michl, J. Surface-mounted altitudinal molecular rotors in alternating electric field: single-molecule parametric oscillator molecular dynamics. Proc. Natl Acad. Sci. USA 102, 14175–14180 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Hawthorne, M. F. et al. Electrical or photocontrol of the rotary motion of a metallacarborane. Science 303, 1849–1851 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Nawara, A. J., Shima, T., Hampel, F. & Gladysz, J. A. Gyroscope-like molecules consisting of PdX2/PtX2 rotators encased in three-spoke stators: synthesis via alkene metathesis, and facile substitution and demetalation. J. Am. Chem. Soc. 128, 4962–4963 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Khuong, T.-A. V., Nuñez, J. E., Godinez, C. E. & Garcia-Garibay, M. A. Crystalline molecular machines: A quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

    CAS  Article  Google Scholar 

  39. 39

    Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    CAS  Article  Google Scholar 

  40. 40

    Rustem, F., Ismagilov, A. S., Bowden, N. & Whitesides, G. M. Autonomous movement and self-assembly. Angew. Chem. Int. Edn 41, 652–654 (2002).

    Article  Google Scholar 

  41. 41

    Paxton, W. F. et al. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Kline, T. R., Paxton, W. F., Mallouk, T. E. & Sen, A. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Edn 44, 744–746 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Fournier-Bidoz, S., Arsenault, A. C., Manners, I. & Ozin, G. A. Synthetic self-propelled nanorotors. Chem. Commun. 441–443 (2005).

  44. 44

    DiLuzio, W. R. et al. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005).

    CAS  Article  Google Scholar 

  45. 45

    Vicario, J. et al. Catalytic molecular motors: Fueling autonomous movement by surface bond synthetic Manganese catalases. Chem. Commun. 3936–3938 (2005).

  46. 46

    Ballardini, R., Balzani, V., Credi, A., Gandolfi, M. T. & Venturi, M. Artificial molecular-level machines: Which energy to make them work? Acc. Chem. Res. 34, 445–455 (2001).

    CAS  Article  Google Scholar 

  47. 47

    Kelly, T. R., De Silva, H. & Silva, R. A. Undirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible, unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    CAS  Article  Google Scholar 

  49. 49

    Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Hernandez, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    CAS  Article  Google Scholar 

  51. 51

    Koumura, N. Zijlstra, R. W. J., van Delden R. A., Harada, N. & Feringa, B. L. Light-driven molecular rotor. Nature 401, 152–155 (1999).

    CAS  Article  Google Scholar 

  52. 52

    Feringa, B. L., van Delden, R. A. & ter Wiel, M. K. J. In control of switching, motion, and organization. Pure Appl. Chem. 75, 563–575 (2003).

    CAS  Article  Google Scholar 

  53. 53

    Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    CAS  Article  Google Scholar 

  54. 54

    van Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    CAS  Article  Google Scholar 

  55. 55

    Kwok, W. M. et al. Time-resolved resonance Raman study of S-1 cis-stilbene and its deuterated isotopomers. J. Raman Spec. 34, 886–891 (2003).

    CAS  Article  Google Scholar 

  56. 56

    Vicario, J., Walko, M., Meetsma, A. & Feringa, B. L. Fine tuning of the rotary motion by structural modification in light-driven unidirectional molecular motors. J. Am. Chem. Soc. 128, 5127–5135 (2006).

    CAS  Article  Google Scholar 

  57. 57

    Schalley, C. A., Beizai, K. & Vogtle, F. On the way to rotaxane-based molecular motors: Studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001).

    CAS  Article  Google Scholar 

  58. 58

    Bissell, R. A., Cordova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    CAS  Article  Google Scholar 

  59. 59

    Alteri, A. et al. Electrochemically switchable hydrogen-bonded molecular shuttles. J. Am. Chem. Soc. 125, 8644–8654 (2003).

    Article  CAS  Google Scholar 

  60. 60

    Nygaard, S. et al. Quantifying the working stroke of tetrathiafulvalene-based electrochemically-driven linear motor-molecules. Chem. Commun. 144–146 (2006).

  61. 61

    Lowe, J. N., Silvi, S., Stoddart, J. F., Badjic, J. D. & Credi, A. A mechanically interlocked bundle. Chem. Eur. J. 10, 1926–1935 (2004).

    Article  CAS  Google Scholar 

  62. 62

    Perez, E. M., Dryden, D. T. F., Leigh, D. A., Teobaldi, G. & Zerbetto, F. A generic basis for some simple light-operated mechanical molecular machines. J. Am. Chem. Soc. 126, 12210–12211 (2004).

    CAS  Article  Google Scholar 

  63. 63

    Brouwer, A. M. et al. Photoinduction of fast, reversible translational motion in a hydrogen-bonded molecular shuttle. Science 291, 2124–2128 (2001).

    CAS  Article  Google Scholar 

  64. 64

    Kay, E. R. & Leigh, D. A. Photochemistry: lighting up nanomachines. Nature 440, 286–287 (2006).

    CAS  Article  Google Scholar 

  65. 65

    Balzani, V. et al. Autonomous artificial nanomotor powered by sunlight. Proc. Natl Acad. Sci. USA 103, 1178–1183 (2006).

    CAS  Article  Google Scholar 

  66. 66

    Jimenez-Molero, C. M., Dietrich-Buchecker, C. & Sauvage, J. P. Towards artificial muscles at the nanometric level. Chem. Commun. 1613–1616 (2003).

  67. 67

    Perkins, T. T., Li, H. -W, Dalal, R. V., Gelles, J. & Block, S. M. Forward and reverse motion of single RecBCD molecules on DNA. Biophys. J. 86, 1640–1648 (2001).

    Article  Google Scholar 

  68. 68

    Thordarson, P., Bijsterveld, E. J. A., Rowan, A. E. & Nolte, R. J. M. Epoxidation of polybutadiene by a topologically linked catalyst. Nature 424, 915–918 (2003).

    CAS  Article  Google Scholar 

  69. 69

    Badjic, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 303, 1845–1849 (2004).

    CAS  Article  Google Scholar 

  70. 70

    Badjic, J. D. et al. Operating molecular elevators. J. Am. Chem. Soc. 128, 1489–1499 (2006).

    CAS  Article  Google Scholar 

  71. 71

    Muraoka, T., Kinbara, K., Kobayashi, Y. & Aida, T. Light-driven open-close motion of chiral molecular scissors. J. Am. Chem. Soc. 125, 5612–5613 (2003).

    CAS  Article  Google Scholar 

  72. 72

    Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    CAS  Article  Google Scholar 

  73. 73

    Morin, J.-F., Shirai, Y. & Tour, J. M. En route to a motorized nanocar. Org. Lett. 8, 1713–1716 (2006).

    CAS  Article  Google Scholar 

  74. 74

    Zheng, X. et al. Dipolar and nonpolar altitudinal molecular rotors mounted on a Au(111) surface. J. Am. Chem. Soc. 126, 4540–4542 (2004).

    CAS  Article  Google Scholar 

  75. 75

    Magnera, T. F. & Michl, J. Altitudinal surface-mounted molecular rotors. Top. Curr. Chem. 262, 63–97 (2005).

    CAS  Article  Google Scholar 

  76. 76

    Otsuki, J., Kawaguchi, S., Yamakawa, T., Asakawa, M. & Miyake, K. Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006).

    CAS  Article  Google Scholar 

  77. 77

    Ikeda, M., Takeuchi, M., Shinkai, S., Tani, F. & Naruta Y. Synthesis of new diaryl-substituted triple-decker and tetraaryl-substituted double-decker lanthanum(III) porphyrins and their porphyrin ring rotational speed as compared with that of double-decker cerium(IV) porphyrins. Bull. Chem. Soc. Jpn 74, 739–746 (2001).

    CAS  Article  Google Scholar 

  78. 78

    Thomas, K. G., Ipe, B. I. & Sudeep, P. K. Photochemistry of chromophore-functionalized gold nanoparticles. Pure Appl. Chem. 74, 1731–1738 (2002).

    CAS  Article  Google Scholar 

  79. 79

    Ashton, P. R. et al. A three-pole supramolecular switch. J. Am. Chem. Soc. 121, 3951–3957 (1999).

    CAS  Article  Google Scholar 

  80. 80

    Huang, T. J. et al. Mechanical shuttling of linear motor-molecules in condensed phases on solid substrates. Nano Lett. 4, 2065–2071 (2004).

    CAS  Article  Google Scholar 

  81. 81

    Flood, A. H., Wong, E. W. & Stoddart, J. F. Models of charge transport and transfer in molecular switch tunnel junctions of bistable catenanes and rotaxanes. Chem. Phys. 324, 280–290 (2006).

    CAS  Article  Google Scholar 

  82. 82

    DeIonno, E., Tseng, H.-R., Harvey, D. D., Stoddart, J. F. & Heath, J. R. Infrared spectroscopic characterization of [2]rotaxane molecular switch tunnel junction devices. J. Phys. Chem. B 110, 7609–7612 (2006).

    CAS  Article  Google Scholar 

  83. 83

    Butt, H.-J. Towards powering nanometer-scale devices with molecular motors, single molecule engines. Macromol. Chem. Phys. 207, 573–575 (2006).

    CAS  Article  Google Scholar 

  84. 84

    Huang, J. et al. A nanomechanical device based on linear molecular motors. Appl. Phys. Lett. 85, 5391–5393 (2003).

    Article  CAS  Google Scholar 

  85. 85

    Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    CAS  Article  Google Scholar 

  86. 86

    Ge, H. L. et al. Photoswitched wettability on inverse opal modified by a self-assembled azobenzene monolayer. Chem. Phys. Chem. 7, 575–578 (2006).

    CAS  Article  Google Scholar 

  87. 87

    Hugel, T., Holland, N. B., Cattani, A., Moroder, L., Seitz, M. & Gaub, H. E. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    Article  Google Scholar 

  88. 88

    Botelho, A. V., Gibson, N. J., Thurmond, R. L., Wang, Y. & Brown, M. F. Conformational energetics of rhodopsin modulated by nonlamellar-forming lipids. Biochemistry 41, 6354–6368 (2002).

    CAS  Article  Google Scholar 

  89. 89

    Takeuchi, M., Ikeda, M., Sugasaki, A. & Shinkai, S. Molecular design of artificial molecular and ion recognition systems with allosteric guest responses. Acc. Chem. Res. 34, 865–873 (2001).

    CAS  Article  Google Scholar 

  90. 90

    de Jong, J. J. D., Lucas, L. N., Kellogg, R. M., van Esch, J. H. & Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304, 278–281 (2004).

    CAS  Article  Google Scholar 

  91. 91

    Sud, D., Norsten, T. B. & Branda, N. R. Photoswitching of stereoselectivity in catalysis using a copper dithienylethene complex. Angew. Chem. Int. Edn 44, 2019–2021 (2005).

    CAS  Article  Google Scholar 

  92. 92

    Irie, M. Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).

    CAS  Article  Google Scholar 

  93. 93

    Tsivgoulis, G. M. & Lehn, J. M. Photoswitched and functionalized oligothiophenes: Synthesis and photochemical and electrochemical properties. Chem. Eur. J. 2, 1399–1406 (1996).

    CAS  Article  Google Scholar 

  94. 94

    Dulic, D. et al. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402 (2003).

    Article  CAS  Google Scholar 

  95. 95

    Willner, I., Doron, A. & Katz, E. Gated molecular and biomolecular optoelectronic systems via photoisomerizable monolayer electrodes. J. Phys. Org. Chem. 11, 546–560 (1998).

    CAS  Article  Google Scholar 

  96. 96

    Willner, I. & Katz, E. Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Edn 39, 1180–1218 (2000).

    CAS  Article  Google Scholar 

  97. 97

    Nomura, A. M., Marnett, A. B., Shimba, N., Dotsch, V. & Craik, C. S. Induced structure of a helical switch as a mechanism to regulate enzymatic activity. Nature Struc. Mol. Biol. 12, 1019–1020 (2005).

    CAS  Article  Google Scholar 

  98. 98

    Furumi, S., Kidowaki, M., Ogawa, M., Nishiura, Y. & Ichimura, K. Surface-mediated photoalignment of discotic liquid crystals on azobenzene polymer films. J. Phys. Chem. B 109, 9245–9254 (2005).

    CAS  Article  Google Scholar 

  99. 99

    Raduge, C., Papastavrou, G., Kurth, D. G. & Motschmann, H. Controlling wettability by light: illuminating the molecular mechanism. Eur. Phys. J. E 10, 103–114 (2003).

    CAS  Article  Google Scholar 

  100. 100

    Oh, S. K., Nakagawa M. & Ichimura K. Photocontrol of liquid motion on an azobenzene monolayer. J. Mater. Chem. 12, 2262–2269 (2002).

    CAS  Article  Google Scholar 

  101. 101

    Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nature Mater. 4, 704–710 (2005).

    CAS  Article  Google Scholar 

  102. 102

    Eelkema, R. et al. Nanomotor rotates microscale objects. A molecular motor in a liquid-crystal film uses light to turn items thousands of times larger than itself. Nature 440, 163 (2006).

    CAS  Article  Google Scholar 

  103. 103

    van Delden, R. A., Koumura, N., Harada, N. & Feringa, B. L. Unidirectional rotary motion in a liquid crystalline environment: Color tuning by a molecular motor. Proc. Natl Acad. Sci. USA 99, 4945–4949 (2002).

    CAS  Article  Google Scholar 

  104. 104

    Holland, N. B. et al. Single molecule force spectroscopy of azobenzene polymers: switching elasticity of single photochromic macromolecules. Macromolecules 36, 2015–2023 (2003).

    CAS  Article  Google Scholar 

  105. 105

    Hugel, T. et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    Article  Google Scholar 

  106. 106

    Harris, K. D. et al. Large amplitude light-induced motion in high elastic modulus polymer actuators. J. Mater. Chem. 15, 5043–5048 (2005).

    CAS  Article  Google Scholar 

  107. 107

    Hess, H., Bachand, G. D. & Vogel, V. Powering nanodevices with biomolecular motors. Chem. Eur. J. 10, 2110–2116 (2004).

    CAS  Article  Google Scholar 

  108. 108

    Koçer, A., Walko, M., Meijberg, W. & Feringa B. L. A light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).

    Article  CAS  Google Scholar 

  109. 109

    Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nature Chem. Biol. 2, 47–52 (2006).

    CAS  Article  Google Scholar 

  110. 110

    Kanazawa, H., Higuchi, M. & Yamamoto K. An electric cyclophane: Cavity control based on the rotation of a paraphenylene by redox switching. J. Am. Chem. Soc. 127, 16404–16405 (2005).

    CAS  Article  Google Scholar 

  111. 111

    Nguyen, T. D. et al. A reversible molecular valve. Proc. Natl. Acad. Sci. USA 102, 10029–10034 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The Authors thank M. M. Pollard for many suggestions and reading of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ben L. Feringa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Browne, W., Feringa, B. Making molecular machines work. Nature Nanotech 1, 25–35 (2006). https://doi.org/10.1038/nnano.2006.45

Download citation

Further reading

Search

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research