Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Supramolecular gratings for tuneable confinement of electrons on metal surfaces

Abstract

The engineering of electron wave functions in reduced dimensions has allowed researchers to explore and visualize fundamental aspects of quantum mechanics1,2 and has also led to new ideas for advanced materials and devices3,4. The scanning tunnelling microscope, in particular, has been used to create two-dimensional structures such as quantum corrals by moving individual atoms on metal surfaces and then probing the quasi two-dimensional surface state electron gases confined therein5,6,7,8,9,10. However, this serial approach is time-consuming and not suited to producing ensembles of nanostructures for the control of electrons. Here we introduce a novel bottom-up method for the fabrication of nanoscale confinement structures on the Ag(111) surface. Scanning tunnelling spectroscopy data show that self-assembled molecular gratings act as one-dimensional resonators, and allow us to tune the characteristics of quantum-well states. We also demonstrate zero-dimensional confinement in quantum corrals down to 2 × 5 nm in size by positioning single Fe atoms, which act as additional electron reflectors, in the molecular gratings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Standing waves of the Ag(111) surface state 2D electron gas and its confinement in one and zero dimensions by self-assembled molecular gratings and Fe atoms.
Figure 2: Quantum-well states in a molecular resonator.
Figure 3: Reflection of electron waves freely propagating along molecular walls at a domain boundary.
Figure 4: Zero-dimensional electron confinement in a quantum corral.

Similar content being viewed by others

References

  1. Nilius, N., Wallis, T. M. & Ho, W. Development of one dimensional band structure in artificial gold chains. Science 297, 1853–1856 (2002).

    Article  CAS  Google Scholar 

  2. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  Google Scholar 

  3. Himpsel, F. J., Ortega, J. E., Mankey, G. J. & Willis, R. F. Magnetic nanostructures. Adv. Phys. 47, 511–597 (1998).

    Article  CAS  Google Scholar 

  4. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  5. Fiete, G. A. & Heller, E. H. Theory of quantum corrals and quantum mirages. Rev. Mod. Phys. 75, 933–948 (2003).

    Article  Google Scholar 

  6. Correa, A., Reboredo, F. A. & Balseiro, C. A. Quantum corral wave-function engineering. Phys. Rev. B 71, 35418 (2005).

    Article  Google Scholar 

  7. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 264, 218–220 (1993).

    Article  Google Scholar 

  8. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirage formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  CAS  Google Scholar 

  9. Kliewer, J., Berndt, R. & Crampin, S. Controlled modification of individual adsorbate electronic structure. Phys. Rev. Lett. 85, 4936–4939 (2000).

    Article  CAS  Google Scholar 

  10. Braun, K.-F. & Rieder, K.-H. Engineering electronic lifetimes in artificial atomic structures. Phys. Rev. Lett. 88, 096801 (2002).

    Article  Google Scholar 

  11. Avouris, P. & Lyo, I.-W. Observation of quantum size effects at room temperature on metal surfaces with STM. Science 264, 942–945 (1993).

    Article  Google Scholar 

  12. Mugarza, A. et al. Electron confinement in surface states on a stepped gold surface revealed by angle-resolved photoemission. Phys. Rev. Lett. 87, 107601 (2001).

    Article  CAS  Google Scholar 

  13. Shiraki, S., Fujisawa, H., Nantoh, M. & Kawai, M. Confining barriers for surface state electrons tailored by monatomic Fe rows on vicinal Au(111). Phys. Rev. Lett. 92, 96102 (2004).

    Article  Google Scholar 

  14. Baumberger, F. et al. Localization of surface states in disordered step lattices. Phys. Rev. Lett. 92, 196805 (2004).

    Article  CAS  Google Scholar 

  15. Barth, J. V. et al. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Edn 39, 1230–1234 (2000).

    Article  CAS  Google Scholar 

  16. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  17. Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 58, 375–407 (2007).

    Article  CAS  Google Scholar 

  18. Meyer, G. A simple low temperature ultra-high vacuum scanning tunneling microscope capable of atomic manipulation. Rev. Sci. Instrum. 67, 2960 (1996).

    Article  CAS  Google Scholar 

  19. Schiffrin, A. et al. Zwitterionic self-assembly of L-methionine nanogratings on the Ag(111) surface. Proc. Natl Acad. Sci. USA (in the press).

  20. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 363, 524–527 (1993).

    Article  CAS  Google Scholar 

  21. Hasegawa, Y. & Avouris, P. Direct observation of standing wave formation at surface steps using STS. Phys. Rev. Lett. 71, 1071–1074 (1993).

    Article  CAS  Google Scholar 

  22. Li, J., Schneider, W.-D. & Berndt, R. Local density of states from spectroscopic scanning tunneling microscope images: Ag(111). Phys. Rev. B 56, 7656–7659 (1997).

    Article  CAS  Google Scholar 

  23. Hensen, H., Kroher, J., Berndt, R. & Crampin, S. Electron dynamics in vacancy islands: STM of Ag(111). Phys. Rev. B 71, 155417 (2005).

    Article  Google Scholar 

  24. Barth, J. V. et al. Stereochemical effects in supramolecular self-assembly at surfaces: 1-D vs. 2-D enantiomorphic ordering for PVBA and PEBA on Ag(111). J. Am. Chem. Soc. 124, 7991–8000 (2002).

    Article  CAS  Google Scholar 

  25. Lee, H., Kim, M. S. & Suh, S. W. Raman spectroscopy of sulphur-containing amino acids and their derivates adsorbed on silver. J. Raman Spectr. 22, 91–96 (1991).

    Article  CAS  Google Scholar 

  26. Silly, F. et al. Creation of an atomic superlattice by immersing metallic adatoms in a two-dimensional electron sea. Phys. Rev. Lett. 92, 16101 (2004).

    Article  Google Scholar 

  27. Stepanyuk, V. S., Negulyaev, N. N., Niebergall, L., Longo, R. C. & Bruno, P. Adatom self-organization induced by quantum confinement of surface electrons. Phys. Rev. Lett. 97, 186403 (2006).

    Article  CAS  Google Scholar 

  28. Bürgi, L., Jeandupeux, O., Hirstein, A., Brune, H. & Kern, K. Confinement of surface state electrons in Fabry–Perot resonators. Phys. Rev. Lett. 81, 5370–5373 (1998).

    Article  Google Scholar 

  29. Gross, L. et al. Scattering of surface state electrons at large organic molecules. Phys. Rev. Lett. 93, 056103 (2004).

    Article  Google Scholar 

  30. Baumberger, F., Greber, T., Delley, B. & Osterwalder, J. Tailoring confining barriers for surface states by step decoration: CO/vicinal Cu(111). Phys. Rev. Lett. 88, 237601 (2002).

    Article  CAS  Google Scholar 

  31. Morgenstern, K., Braun, K. F. & Rieder, K. H. Surface state depopulation on small Ag(111) terraces. Phys. Rev. Lett. 89, 226801 (2002).

    Article  Google Scholar 

  32. Sprunger, P. T., Petersen, L., Plummer, E. W., Lægsgaard, E. & Besenbacher, F. Giant Friedel oscillations on the beryllium(0001) surface. Science 275, 1764–1767 (1997).

    Article  CAS  Google Scholar 

  33. Hansmann, M., Pascual, J. I., Ceballos, G., Rust, H.-P. & Horn, K. Scanning tunneling spectroscopy study of Cu(554): Confinement and dimensionality at a stepped surface. Phys. Rev. B 67, 121409 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Canada Foundation for Innovation, British Columbia Knowledge and Development Fund and the Canadian National Science and Engineering Research Council. W.A. and A.W.-B. acknowledge scholarships from the Swiss National Science Foundation and Deutscher Akademischer Austauschdienst, respectively. We appreciate discussions with F. Baumberger, Th. Greber and G.A. Sawatzky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Barth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennec, Y., Auwärter, W., Schiffrin, A. et al. Supramolecular gratings for tuneable confinement of electrons on metal surfaces. Nature Nanotech 2, 99–103 (2007). https://doi.org/10.1038/nnano.2006.212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing