Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A nanoscale probe for fluidic and ionic transport

Abstract

Surface science and molecular biology are often concerned with systems governed by fluid dynamics at the nanoscale, where different physical behaviour is expected1,2. With advances in nanofabrication techniques, the study of fluid dynamics around a nano-object or in a nano channel is now more accessible experimentally and has become an active field of research1,3,4,5. However, developing nanoscale probes that can act as flow sensors and that can be easily integrated remains difficult. Many studies demonstrate that carbon nanotubes (CNTs) have outstanding potential for nanoscale sensing, acting as strain6,7,8 or charge sensors in chemical9,10,11 and biological12,13,14,15 environments. Although nanotube flow sensors composed of bulk nanotubes have been demonstrated16, they are not readily miniaturized to nanoscale dimensions. Here we report that individual carbon nanotube transistors of 2 nm diameter, incorporated into microfluidic channels, locally sense the change in electrostatic potential induced by the flow of an ionic solution. We demonstrate that the nanotube conductance changes in response to the flow rate, functioning as a nanoscale flow sensor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup for the nanotube-based flow sensor and nanotube transistor conductance versus counterelectrode voltage.
Figure 2: Shift in nanotube transistor threshold voltage with liquid flow rate.
Figure 3: Nanotube transistor threshold shift for different ionic concentrations.
Figure 4: Flow sensor operation.

Similar content being viewed by others

References

  1. Eijkel, J. C. T. & van den Berg, A. Nanofluidics: what is it and what can we expect from it? Microfluid. Nanofluid. 1, 249–267 (2005).

    Article  CAS  Google Scholar 

  2. Israelachvilli, J. N., McGuiggan, P. M. & Homola, A. M. Dynamic properties of molecularly thin liquid films. Science 240, 189–191 (1988).

    Article  Google Scholar 

  3. van der Heyden, F. H. J., Stein, D. & Dekker, C. Streaming currents in a single nanofluidic channel. Phys. Rev. Lett. 95, 116104 (2005).

    Article  Google Scholar 

  4. Li, J. et al. Ion-beam sculpting at nanometre length scales. Nature 412, 166–169 (2001).

    Article  CAS  Google Scholar 

  5. Han, J. & Craighead, H. G. Separation of long DNA molecules in a microfabricated entropic trap array. Science 288, 1026–1029 (2000).

    Article  CAS  Google Scholar 

  6. Cao, J., Wang, Q. & Dai, H. J. Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 90, 157601 (2003).

    Article  Google Scholar 

  7. Minot, E. D. et al. Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).

    Article  CAS  Google Scholar 

  8. Yang, L. & Han, J. Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 85, 154–157 (2000).

    Article  CAS  Google Scholar 

  9. Kong, J. et al. Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000).

    Article  CAS  Google Scholar 

  10. Staii, C., Johnson, A. T., Chen, M. & Gelperin, A. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 5, 1774–1778 (2005).

    Article  CAS  Google Scholar 

  11. Bradley, K., Gabriel, J. C. P., Briman, M., Star, A. & Gruner, G. Charge transfer from ammonia physisorbed on nanotubes. Phys. Rev. Lett. 91, 218301 (2003).

    Article  Google Scholar 

  12. Bradley, K., Briman, M., Star, A. & Gruner, G. Charge transfer from adsorbed proteins. Nano Lett. 4, 253–256 (2004).

    Article  CAS  Google Scholar 

  13. Boussaad, S., Tao, N. J., Zhang, R., Hopson, T. & Nagahara, L. A. In situ detection of cytochrome c adsorption with single walled carbon nanotube device. Chem. Commun. 13, 1502–1503 (2003).

    Article  Google Scholar 

  14. Besteman, K., Lee, J. O., Wiertz, F. G. M., Heering, H. A. & Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 3, 727–730 (2003).

    Article  CAS  Google Scholar 

  15. Gao, M., Dai, L. & Wallace, G. G. Glucose sensors based on glucose-oxidase-containing polypyrrole/aligned carbon nanotube coaxial nanowire electrodes. Synthetic Met. 137, 1393–1394 (2003).

    Article  CAS  Google Scholar 

  16. Ghosh, S., Sood, A. K. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003).

    Article  CAS  Google Scholar 

  17. Larrimore, L., Nad, S., Zhou, X., Abruna, H. & McEuen, P. L. Probing electrostatic potentials in solution with carbon nanotube transistors. Nano Lett. 6, 1329–1333 (2006).

    Article  CAS  Google Scholar 

  18. Heller, I. et al. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 5, 137–142 (2005).

    Article  CAS  Google Scholar 

  19. Campbell, J. K., Sun, L. & Crooks, R. M. Electrochemistry using single carbon nanotubes. J. Am. Chem. Soc. 121, 3779–3780 (1999).

    Article  CAS  Google Scholar 

  20. Kruger, M., Buitelaar, M. R., Nussbaumer, T., Schonenberger, C. & Forro, L. Electrochemical carbon nanotube field-effect transistor. Appl. Phys. Lett. 78, 1291–1293 (2001).

    Article  CAS  Google Scholar 

  21. Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–872 (2002).

    Article  CAS  Google Scholar 

  22. Kirby, B. J. & Hasselbrink, E. F. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25, 187–202 (2004).

    Article  CAS  Google Scholar 

  23. Sze, A., Erickson, D., Ren, L. & Li, D. Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationshp in electroosmotic flow. J. Colloid Interface Sci. 261, 402–410 (2003).

    Article  CAS  Google Scholar 

  24. Kim, D.-K., Majumdar, A. & Kim, S. J. Electrokinetic flow meter. Sensor Actuat. A-Phys. (2006).

  25. Kral, P. & Shapiro, M. Nanotube electron drag in flowing liquids. Phys. Rev. Lett. 86, 131–134 (2001).

    Article  CAS  Google Scholar 

  26. Hunter, R. J. Foundations of Colloid Science (Oxford Univ. Press, New York, 2001).

    Google Scholar 

  27. Ishigami, M. et al. Hooge's constant for carbon nanotube field effect transistors. Appl. Phys. Lett. 88, 203116 (2006).

    Article  Google Scholar 

  28. Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F. & Dai, H. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  CAS  Google Scholar 

  29. Mann, D., Javey, A., Kong, J., Wang, Q. & Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 3, 1541–1544 (2003).

    Article  CAS  Google Scholar 

  30. Duffy, D. C., McDonald, J. C., Schueller, O. J. A. & Whitesides, G. M. Rapid prototyping of microfluidic system poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Micro/Nano Fabrication Laboratory at Caltech where the sample fabrication was performed. This work was sponsored by Schlumberger. The work in Lausanne was supported by the Swiss NSF and its NCCR ‘Nanoscale Science’.

Author information

Authors and Affiliations

Authors

Contributions

B.B., J.W. and M.B. conceived and designed the experiments. B.B. and J.W. performed the experiments. B.B., J.W. and M.B. analysed the data. C.M. and L.F. contributed materials (multiwalled nanotubes). B.B., J.W. and M.B. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Marc Bockrath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourlon, B., Wong, J., Mikó, C. et al. A nanoscale probe for fluidic and ionic transport. Nature Nanotech 2, 104–107 (2007). https://doi.org/10.1038/nnano.2006.211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing