Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications

Abstract

Scanning probe microscopies (SPM) and cantilever-based sensors generally use low-frequency mechanical devices of microscale dimensions or larger. Almost universally, off-chip methods are used to sense displacement in these devices, but this approach is not suitable for nanoscale devices. Nanoscale mechanical sensors offer a greatly enhanced performance that is unattainable with microscale devices. Here we describe the fabrication and operation of self-sensing nanocantilevers with fundamental mechanical resonances up to very high frequencies (VHF). These devices use integrated electronic displacement transducers based on piezoresistive thin metal films, permitting straightforward and optimal nanodevice readout. This non-optical transduction enables applications requiring previously inaccessible sensitivity and bandwidth, such as fast SPM and VHF force sensing. Detection of 127 MHz cantilever vibrations is demonstrated with a thermomechanical-noise-limited displacement sensitivity of 39 fm Hz−1/2. Our smallest devices, with dimensions approaching the mean free path at atmospheric pressure, maintain high resonance quality factors in ambient conditions. This enables chemisorption measurements in air at room temperature, with unprecedented mass resolution less than 1 attogram (10−18 g).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Piezoresistively detected resonant response from a family of SiC nanocantilevers to a 1 nN a.c. drive signal versus frequency, at room temperature in vacuum.
Figure 2: Output voltage noise spectra of high- and very-high-frequency self-sensing nanocantilevers.
Figure 3: Pressure dependence of the resonance quality factor of a VHF nanocantilever.
Figure 4: Real-time NEMS chemisorption measurements.

Similar content being viewed by others

References

  1. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  Google Scholar 

  2. Binnig, G. et al. Atomic resolution with atomic force microscope. Europhys. Lett. 3, 1281–1286 (1987).

    Article  CAS  Google Scholar 

  3. Meyer, E., Hug, H. J. & Bennewitz, R. Scanning Probe Microscopy: The Lab on a Tip (Springer, Berlin, New York, 2004).

  4. Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge Univ. Press, Cambridge, UK, 1994).

  5. Lang, H. P. et al. Nanomechanics from atomic resolution to molecular recognition based on atomic force microscopy technology. Nanotechnology 13, R29–R36 (2002).

    Article  CAS  Google Scholar 

  6. Lavrik, N. V., Sepaniak, M. J. & Datskos, P. G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75, 2229–2253 (2004).

    Article  CAS  Google Scholar 

  7. Yan, X. D., Ji, H. F. & Thundat, T. Microcantilever (mcl) biosensing. Curr. Anal. Chem. 2, 297–307 (2006).

    Article  CAS  Google Scholar 

  8. Albrecht, T. R. et al. Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. A 8, 3386–3396 (1990).

    Article  CAS  Google Scholar 

  9. Roukes, M. Nanoelectromechanical systems face the future. Phys. World 14, 25–31 (February 2001).

    Article  CAS  Google Scholar 

  10. Cleland, A. N. & Roukes, M. L. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    Article  Google Scholar 

  11. Rugar, D. et al. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  12. Yang, Y. T. et al. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article  CAS  Google Scholar 

  13. Mamin, H. J. & Rugar, D. Sub-attonewton force detection at millikelvin temperatures. Appl. Phys. Lett. 79, 3358–3360 (2001).

    Article  CAS  Google Scholar 

  14. Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    Article  CAS  Google Scholar 

  15. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (July 2005).

    Article  Google Scholar 

  16. Tortonese, M., Barrett, R. C. & Quate, C. F. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 62, 834–836 (1993).

    Article  CAS  Google Scholar 

  17. Parker, R. L. & Krinsky, A. Electrical resistance–strain characteristics of thin evaporated metal films. J. Appl. Phys. 34, 2700–2708 (1963).

    Article  CAS  Google Scholar 

  18. Jen, S. U. et al. Piezoresistance and electrical resistivity of pd, au, and cu films. Thin Solid Films 434, 316–322 (2003).

    Article  CAS  Google Scholar 

  19. Smith, C. S. Piezoresistance effect in germanium and silicon. Phys. Rev. 94, 42–49 (1954).

    Article  CAS  Google Scholar 

  20. Kuczynski, G. C. Effect of elastic strain on the electrical resistance of metals. Phys. Rev. 94, 61–64 (1954).

    Article  CAS  Google Scholar 

  21. Hooge, F. N. 1/f noise is no surface effect. Phys. Lett. A A 29, 139–140 (1969).

    Article  Google Scholar 

  22. Arlett, J. L. et al. Self-sensing micro- and nanocantilevers with attonewton-scale force resolution. Nano Lett. 6, 1000–1006 (2006).

    Article  CAS  Google Scholar 

  23. Harley, J. A. & Kenny, T. W. High-sensitivity piezoresistive cantilevers under 1000 angstrom thick. Appl. Phys. Lett. 75, 289–291 (1999).

    Article  CAS  Google Scholar 

  24. Femlab 3.1 (Comsol AB, Burlington, MA, USA).

  25. Scofield, J. H. AC method for measuring low-frequency resistance fluctuation spectra. Rev. Sci. Instrum. 58, 985–993 (1987).

    Article  CAS  Google Scholar 

  26. Rugar, D., Mamin, H. J. & Guethner, P. Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 2588–2590 (1989).

    Article  CAS  Google Scholar 

  27. Yasumura, K. Y. et al. Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117–125 (2000).

    Article  CAS  Google Scholar 

  28. Newell, W. E. Miniaturization of tuning forks. Science 161, 1320–1326 (1968).

    Article  CAS  Google Scholar 

  29. Bhiladvala, R. B. & Wang, Z. J. Effect of fluids on the q factor and resonance frequency of oscillating micrometer and nanometer scale beams. Phys. Rev. E 69, 036307 (2004).

    Article  Google Scholar 

  30. Grate, J. W. & Abraham, M. H. Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays. Sens. Actuator B-Chem. 3, 85–111 (1991).

    Article  CAS  Google Scholar 

  31. Battiston, F. M. et al. A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sens. Actuator B-Chem. 77, 122–131 (2001).

    Article  CAS  Google Scholar 

  32. Sidles, J. A. et al. Magnetic-resonance force microscopy. Rev. Mod. Phys. 67, 249–265 (1995).

    Article  CAS  Google Scholar 

  33. Arlett, J. L. et al. in Controlled Nanoscale Motion in Biological and Artificial Systems. Nobel symposium 131, June 2005; ed. Linke, H. et al. (Springer-Verlag, Heidelberg, in press).

  34. Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

    Article  CAS  Google Scholar 

  35. Yang, Y. T. et al. Monocrystalline silicon carbide nanoelectromechanical systems. Appl. Phys. Lett. 78, 162–164 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support for this work from DARPA/MTO-MGA through grant NBCH1050001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Roukes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Tang, H. & Roukes, M. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech 2, 114–120 (2007). https://doi.org/10.1038/nnano.2006.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing