Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology and metrology of new electronic materials and devices

Abstract

Scaling of the metal oxide semiconductor (MOS) field-effect transistor has been the basis of the semiconductor industry for nearly 30 years. Traditional materials have been pushed to their limits, which means that entirely new materials (such as high-κ gate dielectrics and metal gate electrodes), and new device structures are required. These materials and structures will probably allow MOS devices to remain competitive for at least another ten years. Beyond this timeframe, entirely new device structures (such as nanowire or molecular devices) and computational paradigms will almost certainly be needed to improve performance. The development of new nanoscale electronic devices and materials places increasingly stringent requirements on metrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Moore's Law and scaling of transistor dimensions.
Figure 2: Illustrations of silicon transistors.
Figure 4: The structure of silicon quantum dots.
Figure 5: The importance of compositional metrology.
Figure 6: Does the molecule matter?
Figure 3: Simulation of a finFET.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors (Semiconductor Industry Association, 2005); www.itrs.net

  2. Thompson, S. E. et al. In search of “forever”, continued ltransistor scaling one new material at a time. IEEE Trans. Semiconduct. M. 18, 26–36 (2005).

    Article  Google Scholar 

  3. Moore, G. Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

    Google Scholar 

  4. Chang, L. L. et al. Extremely scaled silicon nano-CMOS devices. Proc. IEEE 91, 1860–1873 (2003).

    Article  CAS  Google Scholar 

  5. Chang, L. L. et al. Moore's law lives on: ultra-thin body SOI and FinFET CMOS transistors look to continue Moore's law for many years to come. IEEE Circuits Device. 19, 35–42 (2003).

    Article  Google Scholar 

  6. Chang, L. L., Ieong, M. & Yang, M. CMOS circuit performance enhancement by surface orientation optimization. IEEE Trans. Electron. Dev. 51, 1621–1627 (2004).

    Article  CAS  Google Scholar 

  7. Chau, R., Datta, S. & Majumdar, A. Opportunities and Challenges of III–V Nanoelectronics for Future High-Speed, Low-Power Logic Applications. IEEE CSIC Symposium Technical Digest 17–20 (2005).

  8. Taur, Y. et al. CMOS scaling into the nanometer regime. Proc. IEEE 85, 486–504 (1997).

    Article  Google Scholar 

  9. Wilk, G. D., Wallace, R. M. & Anthony, J. M. High-kappa gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243–5275 (2001).

    Article  CAS  Google Scholar 

  10. Wong, H. S. P., Frank, D. J., Solomon, P. M., Wann, C. H. J. & Welser, J. J. Nanoscale CMOS. Proc. IEEE 87, 537–570 (1999).

    Article  Google Scholar 

  11. Muller, D. A. A sound barrier for silicon? Nature Mater. 4, 645–647 (2005).

    Article  CAS  Google Scholar 

  12. Sah, C. T. Evolution Of The MOS-Transistor — from Conception To VLSI. Proc. IEEE 76, 1280–1326 (1988).

    Article  CAS  Google Scholar 

  13. Song, S. C. et al. Integration issues of high-k and metal gate into conventional CMOS technology. Thin Solid Films 504, 170–173 (2006).

    Article  CAS  Google Scholar 

  14. Jha, R., Lee, J., Majhi, P. & Misra, V. Investigation of work function tuning using multiple layer metal gate electrodes stacks for complementary metal-oxide-semiconductor applications. Appl. Phys. Lett. 87, 223503 (2005).

    Article  CAS  Google Scholar 

  15. Hisamoto, D. et al. FinFET — a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron. Dev. 47, 2320–2325 (2000).

    Article  CAS  Google Scholar 

  16. Xiong, S. Y. & Bokor, J. Sensitivity of double-gate and finFET devices to process variations. IEEE Trans. Electron. Dev. 50, 2255–2261 (2003).

    Article  Google Scholar 

  17. Anil, K. G., Henson, K., Biesemans, S. & Collaert, N. Layout density analysis of finFETs. Proc. 33rd ESSDERC 139–142 (2003).

  18. Hutchby, J. A., Bourianoff, G. L., Zhirnov, V. V. & Brewer, J. E. Emerging research memory and logic technologies. IEEE Circuits Device. 21, 47–51 (2005).

    Article  Google Scholar 

  19. Zhirnov, V. V., Hutchby, J. A., Bourianoff, G. I. & Brewer, J. E. Emerging research logic devices. IEEE Circuits Device. 21, 37–46 (2005).

    Article  Google Scholar 

  20. Hanafi, H. I., Tiwari, S. & Khan, I. Fast and long retention-time nano-crystal memory. IEEE Trans. Electron. Dev. 43, 1553–1558 (1996).

    Article  CAS  Google Scholar 

  21. Reed, M. A., Frensley, W. R., Matyi, R. J., Randall, J. N. & Seabaugh, A. C. Realization Of A 3-Terminal Resonant Tunneling Device: The Bipolar Quantum Resonant Tunneling Transistor. Appl. Phys. Lett. 54, 1034–1036 (1989).

    Article  Google Scholar 

  22. Lent, C. S. & Isaksen, B. Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron. Dev. 50, 1890–1896 (2003).

    Article  CAS  Google Scholar 

  23. Lent, C. S., Isaksen, B. & Lieberman, M. Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003).

    Article  CAS  Google Scholar 

  24. Chen, J., Klinke, C., Afzali, A. & Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005).

    Article  CAS  Google Scholar 

  25. Chung, S. W., Yu, J. Y. & Heath, J. R. Silicon nanowire devices. Appl. Phys. Lett. 76, 2068–2070 (2000).

    Article  CAS  Google Scholar 

  26. Cui, Y., Zhong, Z. H., Wang, D. L., Wang, W. U. & Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 3, 149–152 (2003).

    Article  CAS  Google Scholar 

  27. Chen, R. H., Korotkov, A. N. & Likharev, K. K. Single-electron transistor logic. Appl. Phys. Lett. 68, 1954–1956 (1996).

    Article  CAS  Google Scholar 

  28. Reed, M. A. Molecular-scale electronics. Proc. IEEE 87, 652–658 (1999).

    Article  CAS  Google Scholar 

  29. Reed, M. A. Molecular electronics: Back under control. Nature Mater. 3, 286–287 (2004).

    Article  CAS  Google Scholar 

  30. Richter, C. A., Stewart, D. R., Ohlberg, D. A. A. & Stanley Williams, R. Electrical characterization of Al/AlOx/molecule/Ti/Al devices. Appl. Phys. A 80, 1355–1362 (2005).

    Article  CAS  Google Scholar 

  31. Wang, W. Y., Lee, T. H. & Reed, M. A. Electronic transport in molecular self-assembled monolayer devices. Proc. IEEE 93, 1815–1824 (2005).

    Article  CAS  Google Scholar 

  32. Arimoto, Y. & Ishiwara, H. Current status of ferroelectric random-access memory. MRS Bull. 29, 823–828 (2004).

    Article  CAS  Google Scholar 

  33. Datta, S. & Das, B. Electronic Analog Of The Electrooptic Modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    Article  CAS  Google Scholar 

  34. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  35. Bauer, G. E. W., Brataas, A., Tserkovnyak, Y. & van Wees, B. J. Spin-torque transistor. Appl. Phys. Lett. 82, 3928–3930 (2003).

    Article  CAS  Google Scholar 

  36. Nikonov, D. E. & Bourianoff, G. I. Spin gain transistor in ferromagnetic semiconductors: The semiconductor Bloch-equations approach. IEEE Trans. Nanotechnol. 4, 206–214 (2005).

    Article  Google Scholar 

  37. Zhirnov, V. V., Cavin, R. K., Hutchby, J. A. & Bourianoff, G. I. Limits to binary logic switch scaling — a Gedanken model. Proc. IEEE 91, 1934–1939 (2003).

    Article  Google Scholar 

  38. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  39. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26, 1484–1509 (1997).

    Article  Google Scholar 

  40. Heath, J. R., Kuekes, P. J., Snider, G. S. & Williams, R. S. A defect-tolerant computer architecture: Opportunities for nanotechnology. Science 280, 1716–1721 (1998).

    Article  CAS  Google Scholar 

  41. Sarpeshkar, R. Analog versus digital: Extrapolating from electronics to neurobiology. Neural Comput. 10, 1601–1638 (1998).

    Article  CAS  Google Scholar 

  42. Diebold, A. C. Metrology technology for the 70-nm node: Process control through amplification and averaging microscopic changes. IEEE Trans. Semiconduct. M. 15, 169–182 (2002).

    Article  Google Scholar 

  43. Diebold, A. C. & Joy, D. A critical analysis of techniques and future CD metrology needs. Solid State Technol. 46, 63 (2003).

    CAS  Google Scholar 

  44. Marchman, H. M. & Griffith, J. E. in Handbook of Silicon Semiconductor Metrology (ed. Diebold, A. C.) (Marcel Dekker, New York, 2001).

    Google Scholar 

  45. Diebold, A. C. et al. Characterization and production metrology of gate dielectric films. Mat. Sci. Semicon. Proc. 4, 3–8 (2001).

    Article  CAS  Google Scholar 

  46. Diebold, A. C. et al. Thin dielectric film thickness determination by advanced transmission electron microscopy. Microscopy Microanal. 9, 493–508 (2003).

    Article  CAS  Google Scholar 

  47. Ehrstein, J. et al. A comparison of thickness values for very thin SiO2 films by using ellipsometric, capacitance-voltage, and HRTEM measurements. J. Electrochem. Soc. 153, F12–F19 (2006).

    Article  CAS  Google Scholar 

  48. Tompkins, H. H. & McGahan, W. A. Spectroscopic Ellipsometry and Reflectometry (Academic Press, New York, 1999).

    Google Scholar 

  49. Guo, J., Wang, J., Polizzi, E., Datta, S. & Lundstrom, M. Electrostatics of nanowire transistors. IEEE Trans. Nanotechnol. 2, 329–334 (2003).

    Article  Google Scholar 

  50. Vashaee, D. et al. Electrostatics of nanowire transistors with triangular cross sections. J. Appl. Phys. 99, 054310 (2006).

    Article  CAS  Google Scholar 

  51. Fonoberov, V. A., Pokatilov, E. P., Fomin, V. M. & Devreese, J. T. Photoluminescence of tetrahedral quantum-dot quantum wells. Physica E 26, 63–66 (2005).

    Article  CAS  Google Scholar 

  52. Tokura, Y., Sasaki, S., Austing, D. G. & Tarucha, S. Excitation spectra and exchange interactions in circular and elliptical quantum dots. Physica B 298, 260–266 (2001).

    Article  CAS  Google Scholar 

  53. Bals, S., Van Tendeloo, G. & Kisielowski, C. A new approach for electron tomography: Annular dark-field transmission electron microscopy. Adv. Mater. 18, 892 (2006).

    Article  CAS  Google Scholar 

  54. Cowley, J. M. Off-axis STEM or TEM holography combined with four-dimensional diffraction imaging. Microscopy Microanal. 10, 9–15 (2004).

    Article  CAS  Google Scholar 

  55. Cumings, J., Zettl, A., McCartney, M. R. & Spence, J. C. H. Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002).

    Article  CAS  Google Scholar 

  56. Joy, D. C. The aberration corrected SEM. AIP Conference Proceedings 788, 535–542 (2005).

    Article  Google Scholar 

  57. Kim, M. J., Wallace, R. M. & Gnade, B. E. HRTEM for nano-electronic materials research. Characterization and Metrology for ULSI Technology 788, 558–564 (2005).

    Article  CAS  Google Scholar 

  58. Shekhawat, G. S. & Dravid, V. P. Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 310, 89–92 (2005).

    Article  CAS  Google Scholar 

  59. Fallahi, P. et al. Imaging a single-electron quantum dot. Nano Lett. 5, 223–226 (2005).

    Article  CAS  Google Scholar 

  60. Garcia-Gutierrez, D. I. et al. Study of two-dimensional B doping profile in Si fin field-effect transistor structures by high angle annular dark field in scanning transmission electron microscopy mode. J. Vac. Sci. Tech. B 24, 730–738 (2006).

    Article  CAS  Google Scholar 

  61. Zhong, J. X. & Stocks, G. M. Localization/quasi-delocalization transitions and quasi-mobility-edges in shell-doped nanowires. Nano Lett. 6, 128–132 (2006).

    Article  CAS  Google Scholar 

  62. Hannon, J. B., Kodambaka, S., Ross, F. M. & Tromp, R. M. The influence of the surface migration of gold on the growth of silicon nanowires. Nature 440, 69–71 (2006).

    Article  CAS  Google Scholar 

  63. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    Article  CAS  Google Scholar 

  64. Na, P. S. et al. Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors. Appl. Phys. Lett. 87 (2005).

  65. Piva, P. G. et al. Field regulation of single-molecule conductivity by a charged surface atom. Nature 435, 658–661 (2005).

    Article  CAS  Google Scholar 

  66. Bonnell, D. A. & Shao, R. Local behavior of complex materials: scanning probes and nano structure. Current Opin. Solid St. M. 7, 161–171 (2003).

    Article  CAS  Google Scholar 

  67. Castell, M. R., Muller, D. A. & Voyles, P. M. Dopant mapping for the nanotechnology age. Nature Mater. 2, 129–131 (2003).

    Article  CAS  Google Scholar 

  68. Voyles, P. M., Grazul, J. L. & Muller, D. A. Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251–273 (2003).

    Article  CAS  Google Scholar 

  69. Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. & Gossmann, H. J. L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002).

    Article  CAS  Google Scholar 

  70. Voyles, P. M., Muller, D. A. & Kirkland, E. J. Depth-dependent imaging of individual dopant atoms in silicon. Microscopy Microanal. 10, 291–300 (2004).

    Article  CAS  Google Scholar 

  71. Sayan, S. et al. Band alignment issues related to HfO2/SiO2/p-Si gate stacks. J. Appl. Phys. 96, 7485–7491 (2004).

    Article  CAS  Google Scholar 

  72. Sayan, S. et al. Valence and conduction band offsets of a ZrO2/SiOxNy,/n-Si CMOS gate stack: A combined photoemission and inverse photoemission study. Phys. Status Solidi B 241, 2246–2252 (2004).

    Article  CAS  Google Scholar 

  73. Kerber, A. et al. Charge trapping in SiO2/HfO2 gate dielectrics: Comparison between charge-pumping and pulsed I-D.-V.-G. Microelectron. Eng. 72, 267–272 (2004).

    Article  CAS  Google Scholar 

  74. Han, J. P. et al. Asymmetric energy distribution of interface traps in n- and p-MOSFETs with HfO2 gate dielectric on ultrathin SiON buffer layer. IEEE Electron. Dev. Lett. 25, 126–128 (2004).

    Article  CAS  Google Scholar 

  75. Heh, D. et al. Spatial distributions of trapping centers in HfO2/SiO2 gate stacks. Appl. Phys. Lett. 88, 152907 (2006).

    Article  CAS  Google Scholar 

  76. Zangmeister, C. D., Robey, S. W., van Zee, R. D., Yao, Y. & Tour, J. M. Fermi level alignment and electronic levels in “molecular wire” self-assembled monolayers on Au. J. Phys. Chem. B 108, 16187–16193 (2004).

    Article  CAS  Google Scholar 

  77. Kim, P., Odom, T. W., Jin-Lin, H. & Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: van Hove singularities and end states. Phys. Rev. Lett. 82, 1225–1228 (1999).

    Article  CAS  Google Scholar 

  78. Reich, S., Thomsen, C. & Ordejon, P. Electronic band structure of isolated and bundled carbon nanotubes. Phys. Rev. B 65, 155411 (2002).

    Article  CAS  Google Scholar 

  79. Sfeir, M. Y. et al. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 306, 1540–1543 (2004).

    Article  CAS  Google Scholar 

  80. Wildoer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    Article  CAS  Google Scholar 

  81. Lake, R., Brar, B., Wilk, G. D., Seabaugh, A. & Klimeck, G. in Compound Semiconductors 1997 Institute of Physics Conference Series 617–620 (1998).

    Google Scholar 

  82. Zimmerman, N. M., Huber, W. H., Fujiwara, A. & Takahashi, Y. Excellent charge offset stability in a Si-based single-electron tunneling transistor. Appl. Phys. Lett. 79, 3188–3190 (2001).

    Article  CAS  Google Scholar 

  83. Hong, C. et al. Spin-polarized reflection in a two-dimensional electron system. Appl. Phys. Lett. 86, 32113 (2005).

    Article  CAS  Google Scholar 

  84. Sayan, S. et al. Band alignment issues related to HfO2/SiO2/p-Si gate stacks. J. Appl. Phys. 96, 7485–7491 (2004).

    Article  CAS  Google Scholar 

  85. Bussmann, E., Zheng, N. & Williams, C. C. Single-electron manpulation to and from SiO2 surface by electrostatic force microscopy. Appl. Phys. Lett. 86, 163109 (2005).

    Article  CAS  Google Scholar 

  86. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002).

    Article  CAS  Google Scholar 

  87. Odom, T. W., Jin-Lin, H., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998).

    Article  CAS  Google Scholar 

  88. Diebold, A. Introduction of stress requires stress metrology methods. Solid State Technol. 48, 59 (2005).

    Google Scholar 

  89. Ku, J., Chang, J., Han, S., Ha, J. & Eom, J. Electrical spin injection and accumulation in ferromagnetic/Au/ferromagnetic lateral spin valves. J. Appl. Phys. 99, 08H705 (2006).

    Article  CAS  Google Scholar 

  90. Lin, H. N. et al. Correlating drain-current with strain-induced mobility in nanoscale strained CMOSFETs. IEEE Electron. Dev. Lett. 27, 659–661 (2006).

    Article  CAS  Google Scholar 

  91. Richter, C. A., Hefner, A. R. & Vogel, E. M. A comparison of quantum-mechanical capacitance-voltage simulators. IEEE Electron. Dev. Lett. 22, 35–37 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Jonsson School of Engineering at the University of Texas at Dallas, the NIST Office of Microelectronics Programs, and the NIST Semiconductor Electronics Division. Contribution of the National Institute of Standards and Technology is not subject to US copyright. The author would like to thank Curt Richter, Steve Knight, David Seiler and Erik Secula for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, E. Technology and metrology of new electronic materials and devices. Nature Nanotech 2, 25–32 (2007). https://doi.org/10.1038/nnano.2006.142

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing